
 1

TCP Tunnels: Avoiding Congestion Collapse

B. P. Lee, R. K. Balan,
L. Jacob, W. K. G. Seah, A. L. Ananda

Centre for Internet Research (CIR)
School of Computing

National University of Singapore
3 Science Drive 2, Singapore 117543

{ leebp, rajeshkr, jacobl, wseah, ananda }@comp.nus.edu.sg

Abstract

This paper examines the attributes of TCP tunnels which are TCP circuits that carry IP packets and benefit

from the congestion control mechanism of TCP/IP. The deployment of TCP tunnels reduces the many flows

situation on the Internet to that of a few flows. TCP tunnels eliminate unnecessary packet loss in the core

routers of the congested backbones which waste precious bandwidth leading to congestion collapse due to

unresponsive UDP flows. We also highlight that the use of TCP tunnels can, in principle, help prevent

certain forms of congestion collapse described by Floyd & Fall [FF98].

Using a testbed of ten Intel PCs running the Linux operating system and traffic generators simulating user

applications, we explore: the benefits which TCP tunnels confer upon its payload of user IP traffic; the

impact on the congestion within network backbones; and the protection that tunnels offer with respect to the

various competing classes of traffic in terms of bandwidth allocation and reduced retransmissions.

The deployment of TCP tunnels on the Internet and the issues involved are also discussed and we conclude

that with the recent RFC2309 recommendation of using Random Early Drop (RED) as the default packet-

drop policy in Internet routers, coupled with the implementation of a pure tunnel environment on backbone

networks makes the deployment of TCP tunnels a feasible endeavour worthy of further investigation.

Keywords: TCP tunnels, aggregation, quality of service (QoS), congestion collapse, queue management,

flow back-pressure, RED routers

 2

1. Introduction

The proliferation of multimedia applications involving voice and video is straining the capacity of the

Internet. The evolution and deployment of new network technologies involving the provision of bandwidth

has continually fed the insatiable end user’s appetite for even more bandwidth. Whenever a leap in network

technology for provisioning bandwidth occurs, the end user demands for bandwidth threatens to consume

the available capacity and stress the limits of technology. In addition, the increasing use of TCP-unfriendly

and unresponsive flows compounds the problem of tackling congestion on the Internet.

A great deal of in-depth research has been carried out on the transport protocols of the Internet, primarily on

the Transmission Control Protocol (TCP), scheduling algorithms and on the efficacy of packet-dropping

policies such as Tail-Drop and Random Early Drop (RED) [FJ93].

A TCP tunnel is a TCP circuit which carries IP frames over the Internet. By layering user flows over this

construct, we hope to benefit from the congestion control mechanism of TCP/IP, especially in segregating

unresponsive flows from TCP-friendly flows. Kung & Wang [KW99] did related work on the properties of

TCP trunks which are similar to TCP tunnels. In their paper, they demonstrate how TCP trunking protects

web users from competing ftp traffic. They also examine how TCP trunking may be used to allow a site to

control its offered load into a backbone network so that the site can assure some QoS for its packets over the

backbone.

This paper studies the behaviour and properties of TCP tunnels in conjunction with RED routers and

examines the benefits and disadvantages they confer on the IP traffic. We try to identify the network

conditions and scenarios where the deployment of TCP tunnels would be beneficial to overall network

performance. We also discuss how TCP tunnels can assist in avoiding certain forms of congestion collapse

on the Internet as considered by Floyd & Fall [FF98].

We believe that the study of TCP tunnels would be most useful, considering the fact that commerce on the

Internet has fueled significant interest and efforts in the deployment of Virtual Private Networks (VPNs)

over the Internet, particularly in assisting resource sharing, work collaboration and meeting privacy

concerns. Typically, VPNs are layered over the Internet and these VPNs are deployed using tunnels. These

tunnels appear as layer-2 constructs to user applications.

 3

Fig 1: TCP Tunnels as transport mechanisms for IP flows over the Internet

We envision that one or more TCP tunnels can be installed between border routers which connect the LANs

to the WANs or the Internet cloud (see Fig. 1). Later, we show that this has the effect of confining packet

drops to the LAN side and helps to keep congestion low on core routers (also known as WAN routers). TCP

tunnels can also be deployed by Internet Service Providers on point-to-point links to take advantage of

attributes of TCP tunnels and offer better service. For instance, if traffic from interactive applications such

as telnet or http arrive at a last hop bottleneck link and are liable to be dropped, TCP tunnels can be

deployed over this link to offer protection from losses due to congestion.

Fig 2: Testbed

INTERNET

TCP Tunnels

Border Router Border Router

End Machines/
Networks

End Machines/
Networks

End Machines
(Senders)

TCP Tunnels
(T1 to T2)

B

A

C

Y

X

Border router/
TCP Tunnel

gateway

Delay/Error
Box

T2

End Machines
(Receivers)

D2 D1

Border router/
TCP Tunnel

gateway

Delay/Error Box
and Core Router

T1

 4

The experiments that are described in this paper make reference to the testbed depicted in Fig 2. RedHat 6.0

with Linux Kernel version 2.2.12 are installed on our PCs, all of which are Intel Celeron 300A with 128MB

of memory each. The network cards we use are the Intel Ether Express Pro 10/100 (100Mbps). The

delay/error box is able to buffer and delay packets to simulate various latencies, and selectively drop and

corrupt packets. We use ttcp [MS85] and iperf [GW] to generate bulk TCP traffic and Surge [BC98] for

generating http traffic. tcpdump is used to collect the traffic and the traffic analysis is carried out using

tcptrace. RED and Tail-Drop are implemented using the Linux Traffic Control Extensions [Al99].

Our TCP tunnel implementation is written in C. On the TCP tunnel transmitter side, it receives IP packets

from the incoming interface using libpcap routines and transmits these packets over one or more TCP

connections. We configured a Tail-Drop queue of 1000 packets leading into each TCP tunnel. The TCP

tunnel receiver reads the IP frames from the various TCP connections and writes them out to the outgoing

interface using raw sockets.

The rest of the paper is as organised as follows: Section 2 will cover the protection that tunnels can offer to

TCP-friendly flows in various scenarios. The effects of TCP tunnels and RED on router queue lengths are

discussed in Section 3. Section 4 elaborates on the congestion control property of TCP tunnels and explains

how this attribute gives rise to back-pressure which pushes congestion to edge routers from the core routers.

The types of congestion collapse that may arise on the Internet and the congestion control property of

tunnels that can help to prevent some forms of congestion collapse are discussed in Section 5. Section 6

covers the possible application of tunnels in the provisioning of Proportional Differentiated Services over

the Internet and Section 7 touches on the deployment issues for TCP tunnels.

2 Protection of TCP-friendly flows

UDP traffic are not TCP-friendly [FF98] and hence, do not respond to packet drops which signal congestion.

This aggressive behaviour degrades and even shuts out TCP flows, both bulk transfers (ftp) and interactive

applications (http and telnet), and thus preventing them from obtaining their fair share of bandwidth over a

congested link. In this section, we examine how tunnels can be deployed to isolate different types of traffic

from one another and protect interactive user applications from aggressive flows.

 5

2.1 Protection of TCP bulk flows from unresponsive UDP flows

In this section, we show how TCP flows carrying bulk traffic are protected from aggressive UDP flows over

a congested link. We assume that a number of tunnels are deployed over the link, each carrying a specific

kind of traffic, and that they compete with each other for bandwidth. All traffic flows, UDP or TCP,

traversing the congested link has to go through at least one of the tunnels. As a result, UDP flows are

prevented from clogging the congested link as the tunnels carrying the UDP flows will suffer packet drops

and will be forced to throttle their sending rates. Here, we see that the UDP flows are endowed with a crude

form of end-to-end congestion control by virtue of being wrapped in TCP tunnels.

We demonstrate this by sending a 10 Mbps UDP flow (CBR data) from A to X and 100 TCP flows

(representing 100 concurrent file transfers of 512KB each) from C to Y (see Fig. 2). The end-to-end Round

Trip Time (RTT) is 10ms and all the links are 10 Mbps except the link D2-T2 which is 1 Mbps. The UDP

flow is very aggressive and unresponsive . The MTU is 1500 bytes for both sources of traffic. The

bottleneck link of 1 Mbps is fed by a RED queue (with parameters minth=20KB, maxth=520KB, maxp=0.02).

The run is considered complete when all file transfers are complete. We use the above scenario to run two

experiments; one without TCP tunnels and one with TCP tunnels (tunnels deployed between T1-T2). The

results of this experiment are shown in Table 1.

Without the tunnels, we observe that the UDP flow consumes most of the bandwidth, leaving each TCP

flow with a mean throughput of 1.18 Kbps. Things are different when we use TCP tunnels to isolate both

types of traffic. Here, the mean throughput of the TCP flows increases to 2.85 Kbps. The UDP flow is

carried over one tunnel and the TCP traffic is carried over a separate tunnel. Both tunnels are fed by their

own Tail-Drop queues, each of which has a capacity of 1000 packets. Should the TCP tunnels be served by a

single shared queue, the greedy non-responsive UDP flow can just hog this queue and shut out other flows.

When we run the UDP flow against a few TCP flows (less than five), it is observed that the TCP flows are

totally shut out and could not complete their transfers. The situation improves when we increase the number

of competing TCP flows to a significant figure, say, 100 as given above. During the experiments, it is

noticed that the aggressive nature of the TCP tunnels is determined by its payload. A tunnel carrying UDP

traffic is more aggressive when pitted against another tunnel which carries a few TCP flows. Presumably,

when either tunnel suffers a packet drop, it reduces its congestion window and propagates this effect to its

payload. The TCP flows take time to ramp up their transmission rates, unlike the UDP flow whose

transmission rate is unaffected.

 6

Per TCP flow statistics Without TCP Tunnel

With TCP Tunnel

% Improvement

(+ means in TCP Tunnel’s

favour, - means unfavourable)

RTT average (ms) 4133.49 15821.83 (-) 282.77

RTT minimum (ms) 1292.33 1200.14 (+) 7.13

RTT maximum (ms) 4563.39 17103.36 (-) 274.79

Number of RTT samples 83.16 168.50 (+) 102.62

Retransmitted bytes 385783.90 57773.36 (+) 567.75

Retransmitted packets 266.78 39.93 (+) 568.12
Retransmitted data segments
over total segments 28.10 6.10 (+) 360.51

Data segments sent 624.45 397.47 (+) 57.11
Acknowledgement segments
sent 324.27 247.32 (+) 31.11
Data segments over total
segments 65.82 61.66 (+) 6.74

Total Segments 948.72 644.79 (+) 47.14

Average throughput (Kbits/s) 1.18 2.85 (+) 141.53

Table 1: Per TCP flow statistics obtained from tcptrace analysis program

From Table 1, we see that TCP tunnels reduce the overall amount of traffic sent. The amount of

retransmissions per connection are reduced by over 500% as the tunnel provides reliability in the face of

congestion. Packet loss from the tunnel due to heavy congestion has minimum impact on TCP flows and

precious link bandwidth is not wasted on retransmissions.

However, the tunnels degrade the TCP RTT estimations badly (up to 280%!). Note that when the TCP

tunnel is forced to throttle its sending rate due to congestion at the bottleneck link, packets get queued up at

the tunnel ingress. The sources which are oblivious to the congestion continue to send at an increased rate

until the queues at the tunnel ingress overflow. Only lost packets due to this overflow are retransmitted by

the sender. It would be interesting to examine the effect that the sizes of the queues which feed the TCP

tunnels have on the RTTs of TCP flows.

 7

2.2 Protection of Interactive Traffic over Congested Links

Interactive end user applications such as http often suffer long delays and even timeouts over WAN links as

they usually traverse over a bottleneck link and compete with other types of traffic. Usually, the bottleneck

link is a single hop of low latency. The http connections suffer packet drops at this link which leads to

inevitable timeouts.

An Internet Service Provider (ISP) may choose to deploy TCP tunnels over this short latency bottleneck link

to isolate the interactive traffic from other aggressive traffic. The TCP tunnels will also handle

retransmissions over this congested link and minimise retransmissions by the end user applications and

possible timeouts.

Fig 3: Tunnel offering reliability for interactive flows over congested bottleneck link.

To demonstrate this scenario, we set up the configuration shown in Fig. 3 using the testbed. T1 and T2 are

the tunnel end-points and the TCP tunnels are layered over this 1 Mbps bottleneck. Note that this bottleneck

link is limited to 1 Mbps in the forward direction (towards X and Y) and the reverse path is of bandwidth 10

Mbps. The experimental run lasts 300 seconds. The 100 http connections from B to Y are started first and

the UDP flow of 5 Mbps, from A to X, is started 10 seconds later. Note that each one of the traffic classes is

carried by different tunnels.

RTT=200 ms
Link bw=10Mbps

RTT=10 ms
Link bw=1Mbps

UDP flow
CBR=5Mbps

100 http
flows

TCP Tunnels

B

A

http server

Y

X

UDP
receiver

WAN router/TCP
Tunnel gateway Border

router
T1 T2 D1

 8

Per http flow statistics Without TCP Tunnels With TCP tunnels

Packets in Forward direction (http requests) 13.64 25.48

Packets in Reverse direction (http data) 13.11 30.00

Total Packets transferred 27.75 55.48

Forward/Reverse Aggregated Throughput (Bps) 1260 / 64247 1582 / 126325

Successful / Total http connections made 45 / 208 (21.6%) 290 / 624 (46.5%)

Table 2: http flow statistics

From Table 2, we see that the http connections protected by the TCP tunnels managed to achieve higher

average packet and aggregated throughput. More importantly, for the same experimental run and duration, a

greater number of successful and complete http connections were made with the help of the tunnels. Without

the protection of the tunnels, numerous http connections suffered timeouts and were unable to complete their

transfers within the same interval (i.e. 300 seconds).

2.3 Protection from Fragmentation

The performance of user connections on the Internet is limited by the Path MTU [RFC1191]. This refers to

the largest size that an IP datagram can take which permits it to traverse the network without undergoing

fragmentation.

In [KM87], it was argued that fragmentation is inefficient, the loss of any fragment degrades performance

due to retransmission and that efficient reassembly of fragments is hard. [KM87] concludes that the

disadvantages of fragmentation far outweigh its benefits and fragmentation should be avoided as far as

possible.

A TCP tunnel behaves like a level 2 (datalink) circuit and hides the different MTUs of the underlying

networks and links it spans over the Internet. The user flows (in the form of IP packets which is the tunnel’s

payload) are oblivious to these different MTUs and hence are free to use its own value, presumably the

largest (limited by the sender’s interface’s MTU setting) to maximise throughput. If the use of larger MTUs

is permitted, each packet carries less header overhead and this allows TCP connections to ramp up their

congestion windows faster.

 9

To get an idea of the relationship between throughput and MTU sizes, we vary the Path MTUs as shown in

Table 3 (1st column) and measure the resulting throughput of a TCP. Our first scenario is without TCP

tunnels while the second is with TCP tunnels. In both scenarios, a round-trip delay of 211ms was set

between A to X (Fig. 2) which were the end machines used to create the TCP connection used in the two

scenarios. The different MTUs were set on the path between T1 to T2 (Fig. 2) which has a round-trip delay

of 10ms. For the scenario with TCP tunnels, the tunnels were deployed between T1 and T2 to encompass the

path with the different MTU. Ten runs were conducted per MTU setting. Note that the traffic source’s MTU

setting is fixed at 1500 bytes for all runs.

Path MTU (T1-T2)

(bytes)

Mean Throughput of 10 runs (Mbps)

No TCP Tunnel

Mean Throughput of 10 runs (Mbps)

1500 7.40 7.40 (+0%)

1006 7.10 7.40 (+4%)

576 6.50 7.08 (+9%)

296 5.00 6.70 (+34%)

Table 3: Mean connection throughput for various MTUs

From Table 3, it can be seen that the tunnels improved the throughput of the end-to-end connection for

lower MTU values across T1 to T2. This was because the tunnels confined the fragmentation caused by the

lower MTU path to the tunnel only and did not allow the fragmentation to be propagated to the rest of the

network.

Similarly, UDP flows would experience higher throughput by sending datagrams with large MTUs over

links with smaller MTUs via tunnels. Finally, the use of Path MTU Discovery does not obviate the relevance

of TCP tunnels. With Path MTU Discovery, the sender still has to send IP frames no larger than the smallest

MTU along the path to avoid fragmentation. TCP tunnels allow senders to send packets at the largest

possible MTU (limited by the MTU settings on their interfaces) despite the smaller MTUs along the path.

The presence of these smaller MTUs are totally transparent to the sender and the tunnels protect the sender

from fragmentation caused by these smaller MTUs.

 10

3. Effects of Tunnels on Router Queue Lengths

Tail-Drop has been adopted widely on routers as the default packet-dropping policy. However, this policy

causes many TCP flows to throttle their sending rates at the same time, when the queue overflows. These

flows would then ramp up their transmission rates until the queue overflows again. This synchronisation in

flow behaviour causes burst effects and may reduce average flow throughput and link utilisation. In

addition, the average queue length of Tail-Drop routers tend to be high and this introduces longer packet

delays.

RED is designed to penalise TCP-friendly flows which consume more than their fair share of bandwidth by

randomly dropping packets from the flows when the average queue size exceeds the minimum threshold.

RED eliminates the synchronisation and burst effects seen in Tail-Drop. RED, however, has no effect on

UDP or unresponsive flows which do not respond to packet drops. The flows that suffer from RED-induced

packet drops would be the good guys, the TCP-friendly flows.

To underscore our point on the queue lengths of routers adopting RED and Tail-Drop packet-dropping

policies, we run experiments with an increasing number of TCP flows from a 10 Mbps source which

traverse a bottleneck link of 1 Mbps. The runs are repeated for RED0.02, RED0.1 (RED with maximum

drop probability, maxp, of 0.02 and 0.1, respectively) and Tail-Drop. The minimum and maximum

thresholds for the RED queues, minth and maxth, are 20 KB and 520 KB, respectively. The sizes of both

RED and Tail-Drop queues are 520 KB.

Fig. 6 and 7 summarise the results. Note that the various queues’ hard limits of 520KB translates to a

maximum queue occupancy of 354 packets of MTU 1500 bytes each. The confidence interval for Tail-Drop

in Fig. 6 extends past this limit as the queues contain some small amount of spurious traffic due to Network

Time Protocol (NTP) synchronisation between the machines on our testbed.

 11

Fig 6: Average Queue Occupancy for RED & Tail-Drop (No TCP Tunnels)

From Fig. 6, we can see that the mean queue length for Tail-Drop is high and the instantaneous queue

lengths are highly variable. The RED policies manage to keep the average queue lengths low compared to

Tail-Drop. The average queue length under RED scales with the number of TCP flows. RED0.1

demonstrates that increasing the maximum packet drop probability has the effect of reducing the average

queue length. Fig. 7 shows that the instantaneous queue length is close to overflowing the queue for 80

connections.

0

50

100

150

200

250

300

350

400

10 20 30 40 50 60 70 80

Number of TCP Flows

A
ve

ra
ge

 Q
ue

ue
 O

cc
up

an
cy

 (
pa

ck
et

s)

Tail-Drop
RED0.02
RED0.1
Maximum

(RED0.02: link=1 Mbps, min=20KB, max=520KB, limit=520K, maxp=0.02

RED0.1: link=1 Mbps, min=20KB, max=520KB, limit=520K, maxp=0.1

Tail-Drop: link=1 Mbps, limit=520KB)

 12

0

50

100

150

200

250

300

350

400

0

4.
6 9

13
.3

17
.5

21
.7

26
.1

30
.4

34
.6 39

43
.2

47
.4

51
.7

56
.1

60
.3

64
.5

68
.8

73
.2

77
.4

81
.6 86

90
.2

94
.5

98
.7

Time (secs)

In
st

an
ta

ne
ou

s
Q

ue
ue

 O
cc

up
an

cy

 (p
ac

ke
ts

)

Tail-Drop (30 connections)

RED0.02 (80 connections)

RED0.1 (80 connections)

Fig 7: Instantaneous queue occupancy for RED & Tail-Drop (No TCP Tunnels)

Although RED is able to keep the average queue length low for a small number of flows, its behaviour

seems to approximate that of Tail-Drop when the number of flows that it has to deal with becomes large.

The point we are emphasising is that the deployment of TCP tunnels reduces the number of flows within the

core routers. The core routers only need to manage the few TCP tunnel flows. Therefore, as RED is being

increasingly adopted by routers as the default packet-dropping policy (recommended by RFC2309), we feel

that TCP tunnels in conjunction with RED make an important contribution towards controlling congestion

on the Internet.

4. Congestion Control and Back-Pressure Effects of TCP Tunnels

[FF97] discusses the problems of unresponsive flows and the danger of congestion collapse of the Internet

while [PSG] discusses the use of back pressure in moving congestion away from the core. The rates of UDP

flows are not limited by congestion control and such aggressive flows only starve TCP-friendly flows of

 13

their rightful share of bandwidth. In addition, UDP flows typically exacerbate congestion problems and

waste precious bandwidth when their packets are dropped during the onset of congestion.

TCP tunnels provide a possible solution out of this dilemma. Tunnels could be used to wrap UDP flows at

edge routers. The tunnels carry the UDP flows over the Internet and are then subjected to the ever-changing

conditions of the network. When congestion occurs, the packet drops force the tunnels to throttle their

sending rates. The advantage here is that the UDP flows are now TCP-friendly (so to speak) and sensitive to

packet drops from the perspective of the core routers. This is of particular relevance when RED is deployed

on routers as the default packet dropping policy. In short, packet losses in the congested core routers are

now pushed to edge routers.

The main objection to this idea is that the tunnel would then introduce unnecessary delay and jitter variances

to delay-sensitive UDP flows, on the order of several RTTs as the tunnel attempts retransmission (the tunnel

being a TCP circuit offering reliable delivery of data). This will be discussed further in Section 8.

A huge advantage of carrying user flows over TCP tunnels and deploying tunnels in WAN environments is

that congestion will be pushed to the edge routers from the core routers (similar to the back-pressure effect

in ATM networks). The tunnels would seek out their fair share of bandwidth as network conditions change

and packets are dropped from the tunnels. In response to the packet drops, the tunnels would throttle their

sending rates and drop packets of user flows at the ingress tunnel gateways. The packet drops experienced

by the tunnels within the backbone of the WAN network (at the core routers) would be low, since these

losses are from the TCP tunnels themselves which would throttle their transmission rates in response.

Contrast this with the situation where huge numbers of user flows enter the core without the deployment of

tunnels. The link efficiency and utilization of the core is expected to be higher when tunnels are deployed.

Notice that the deployment of tunnels are akin to the Virtual Paths of ATM networks.

 14

Fig 8: Instantaneous Queue occupancies for core router with and without TCP tunnels

To demonstrate the back-pressure effect, we run 50 bulk TCP flows on each of the machines A, B, and C to

destinations X and Y (see Fig. 2). We also monitor the queue lengths at the core router (D2), and at the TCP

tunnel router (T1). Each one of the three tunnels is fed by a separate Tail-Drop queue (maximum size of

1000 packets), and RED is adopted as the packet-drop mechanism on the core router, with the following

settings: minth=20KB, maxth=520KB, limit=520KB, maxp=0.02.

From Fig. 8, we can see that the queue length of the core router is high. It reaches the limit of the RED

queue. When TCP tunnels are deployed, the core router experiences a much lower queue length (peak queue

length = 96). Fig. 9 displays the instantaneous queue lengths of the three Tail-Drop queues of the tunnel

router along with that of the RED queue of the core router. Notice that the queue lengths at the tunnel router

are much higher than the queue length at the core router, thus indicating that the congestion has been moved

from the core to the edge.

No Tunnels

0

50

100

150

200

250

300

350

400

0

12
.7

25
.4

38
.2

50
.7

63
.5

76
.2 89 10
2

11
4

12
7

14
0

15
2

16
5

17
8

19
0

20
3

21
6

22
9

24
1

25
4

26
7

27
9

Time (sec)

In
st

an
ta

ne
ou

s
Q

ue
ue

 O
cc

up
an

cy

 (p
ac

ke
ts

)

Max = 357

Max = 96 Tunnels

 15

0

200

400

600

800

1000

1200
0

14
.3

28
.1 42

55
.6

69
.5

83
.3

97
.2

11
1

12
5

13
9

15
3

16
6

18
0

19
4

20
8

22
2

23
6

25
0

26
3

27
7

29
1

30
5

31
9

Time (sec)

In
st

an
ta

ne
ou

s
Q

ue
ue

 O
cc

up
an

cy

 (p
ac

ke
ts

)

Fig 9: Instantaneous Queue occupancies for core and tunnel routers using TCP tunnels

Number TCP flows in the core Without Tunnels With Tunnels

60 3.12% 0.15%

120 7.27% 0.14%

180 11.80% 0.15%

240 19.41% 0.16%

Table 4: Percentage of dropped packets in the core router

Using the above experimental setup, we run experiments to determine the percentage of dropped packets

within the core router as the TCP load is steadily increased. From Table 4, it can be seen that tunnels

significantly reduce and even stabilise the percentage of dropped packets in the core router even when the

number of TCP flows increases.

Core Router Max=96

Limit=1000

Tunnel Router

 16

5. Avoiding Congestion Collapse

[FF98] discusses at length the various forms of congestion collapse.

Classical congestion collapse [RFC896] occurs when the TCP connections unnecessarily retransmit packets

which are still in transit or have been received, during heavy network load. The network reaches saturation

and continues to operate under degraded conditions where the throughput is much lower than normal. This

form of congestion collapse has been avoided by the adoption of congestion control principles put forward

by Van Jacobson [RFC2581]. TCP tunnels can help to avoid this form of congestion collapse as the tunnels

reduce the number of unnecessary retransmissions as established in Section 2.1.

Congestion collapse from undelivered packets results when precious bandwidth is consumed and wasted by

packets which are dropped before reaching their final destination. Open-loop applications such as voice,

video and music applications probably will be the number one contributors to this type of congestion

collapse as such applications do not utilise congestion control. The tunnel guarantees delivery of the

permitted amount of open-loop user traffic to their destination and no user packets are lost within the tunnel.

The use of TCP tunnels pushes the congestion from the core routers to the edge routers which causes packet

drops to occur at the entry points, rather than further down the network.

Fragmentation-based congestion collapse arises when packets are dropped when their fragments cannot be

reassembled into complete packets as some fragments are lost, possible due to congestion experienced en

route to the receivers. The continued congestion by packets which will probably be dropped by the receivers

wastes bandwidth and results in reduced throughput. Early Packet Discard and Path MTU Discovery were

highlighted [FF98] as two mechanisms useful in combating this form of congestion collapse. We claim TCP

tunnelling could be one more of such mechanisms as it confines the fragmentation to the tunnel alone and

permits the use of the largest possible MTU for a TCP connection.

Congestion collapse from increased control traffic manifests when increasing load is accompanied by

increased control traffic such as route updates, multicast join requests etc. TCP tunnels can prevent control

traffic and their related user traffic from congesting the busy backbones by remapping the tunnels carrying

those types of traffic to relatively uncongested paths in the network.

 17

6. Providing Quality of Service Guarantees

It was proposed by [KW99] that TCP Trunks could be used as a means of assuring Quality of Service (QoS)

by exploiting the elastic property of the TCP circuit (tunnel). TCP’s congestion and flow control would

dynamically probe for available bandwidth when the load conditions of the network change. [KW99] also

suggested that the tunnel and its payload (user flows) could be allocated a guaranteed minimum bandwidth

and be given more bandwidth when spare link capacity was available. Few other details were offered on

how this was possible and it seems that deploying TCP tunnels is tricky. However, the deployment of TCP

tunnels and its benefits would be more apparent if we attempt to qualify its applications to certain scenarios.

Using TCP tunnels to guarantee absolute QoS is not feasible without some form of route pinning. The

reservation of resources necessary to support user services have to be instantiated at every hop of the

network, even for tunnels, either manually or through some form of signalling (e.g. RSVP). This alone is a

huge obstacle in deploying QoS-enabled tunnels on the Internet. However, the aggregation of user flows into

tunnels offering different classes of service naturally complements any network QoS system (over WAN) as

it contributes to scalability and eases the problem of flow identification and classification.

A more feasible approach in adapting TCP tunnels for QoS over the Internet would be to offer Proportional

Differentiated Services (proportional QoS) vis-a-vis Absolute Differentiated Services (absolute QoS)

[DR][DSR]. Consider capacity differentiation as an example. A CBQ system could offer traffic class A 30%

of the available bandwidth and traffic class B the remaining portion (70%) over the Internet. However, there

is no minimum bandwidth guarantee that we can extract from the Internet without the cooperation of hops

along the route and the bandwidth available changes from time to time. But, tunnels carrying both classes of

traffic are always probing and utilising their fair share of the total bandwidth and we think it is not

inconceivable that a CBQ system, applying some form of weighted fair queueing, would be able to deliver

the flow of both traffic classes over the Internet in the promised proportions.

7. Deployment of TCP Tunnels

The tunnels are most suitable for deployment at border routers as the greatest mismatch of link bandwidths

occur at the edges of the Internet cloud. This mismatch is still true today as LANs now offer Gigabit speeds

while WANs struggle to keep up, managing at most Megabit capacities. As traffic transit at such boundaries,

 18

TCP tunnels can be suitably positioned there to manage various classes of traffic and yet drop excess traffic

closest to the sources, rather than allowing the unwanted traffic to be discarded in the core backbones and

consuming precious bandwidth in the process.

The Internet has managed to meet the needs of its communities and users simply because its concept and

deployment have been rigorously kept simple and scalable. Aggregation using tunnels reduces the problem

of many flows to that of a few flows. This allows Internet Service Providers (ISPs) to identify and provide for

classes of services in a scalable manner. The adoption of tunnels by ISPs would be invisible to user

applications and these ISPs could provide incentives to encourage use of tunnels by favouring tunnels in

their routers through the allocation of traffic priorities and judicious application of preferred scheduling and

queueing policies.

Tunnels lend themselves easily to traffic management and provisioning through MPLS and RSVP. Tunnel

flows can be uniquely identified by their IP addresses and ports, i.e. <source IP, destination IP, source TCP

port, destination TCP port>. However, it is critical to ensure that the deployment of tunnels do not alter the

behaviour of their payload, especially those of TCP flows.

8. Summary & Future Research

We have demonstrated that TCP tunnels offer TCP-friendly flows protection against aggressive and

unresponsive flows. In addition, we find that TCP tunnels hide the different MTUs (typically smaller) of the

underlying network links from the user flows and allow these flows to send traffic at the largest possible

MTUs (dictated by their end network interfaces).

We also find that aggregation of user flows into TCP tunnels resulted in lower average queue lengths and

less packet drops in the core routers. The lower number of packet drops indicate that less bandwidth is being

wasted in the core backbone while the lower average queue lengths indicate that the core routers can be

provisioned with less memory resources for handling tunnel flows. In other words, tunnels allow the routers

to handle even more flows than otherwise possible, with the same amount of memory resources.

By carrying greedy flows over TCP tunnels, the core routers are able to control the amount of traffic from

unresponsive flows such as UDP (from multimedia applications) in the event of congestion within the

 19

network backbones. Therefore, precious limited bandwidth is not hogged by unresponsive flows which will

be wasted when their packets are dropped by the core routers when congestion occurs.

Aggregating flows into a TCP tunnel may also introduce synchronisation and burst effects. If the network is

in a steady state, the bandwidth and round-trip times offered by the tunnel is also steady. However, changes

in network conditions may cause wild swings in tunnel behaviour and transmit such effects to the user flows

which it transports. This will probably impact delay-sensitive traffic badly, especially if the tunnel attempts

data recovery over a long latency link. One solution to this could be to design a TCP-like protocol offering

the flow and congestion control characteristics of TCP/IP and yet, without its (TCP’s) reliable delivery of

data. Such a protocol would not be unlike RTP complemented by flow and congestion control principles of

TCP. More importantly, this would be of greater relevance as a transport protocol for end-to-end delay

sensitive applications.

References

[Al99] W. Almesberger, “Linux Network Traffic Control – Implementation Overview”¸ April 1999,

ftp://lrcftp.epfl.ch/pub/people/almesber/pub/tcio-current.ps

[BC98] P. Barford and M. Crovella, “Generating Representative Web Workloads for Network and Server

Performance Evaluation”, Proc. ACM SIGMETRICS ’98, June 1998

[DJ91] Peter Danzig, Sugih Jamin, “tcplib: A Library of TCP/IP Traffic characteristics”, University of

Southern California, October 1991.

[DR] C. Dovrolis, P. Ramanathan, “A Case for Relative Differentiated Services and the Proportional

Differentiated Model”

[DSR] C. Dovrolis, D. Stiliadis, P. Ramanathan, “Proportional Differentiated Services: Delay

Differentiation and Packet Scheduling”

[FF97] S. Floyd, K. Fall, “Router Mechanisms to Support End-to-End Congestion Control”, 1997

[FF98] S. Floyd, K. Fall, “Promoting the Use of End-to-End Congestion Control in the Internet”, 1998

[FJ93] S. Floyd, V. Jacobson, “Random Early Detection Gateways for Congestion Avoidance”, August 1993

IEEE/ACM Transactions on Networking

[GW] M. Gates, A. Warshavsky, “Iperf version 1.1”, http://www.east.isi.edu/~tgibbons/iperf/index.html

[KM87] C. A. Kent, J. C. Mogul, “Fragmentation Considered Harmful”, Dec 1987, Digital Western Research

Laboratory

[KW99] H. T. Kung and S. Y. Wang, “TCP Trunking: Design, Implementation and Performance”, Proc. 7th

International Conference on Network Protocols (ICNP’99), October 1999

 20

[MS85] M. Muuss and T. Slattery, “ttcp: Test TCP”, US Army Ballistics Research Lab (BRL), Nov 1985.
Enhanced version by Silicon Graphics Incorporated. October 1991, ftp://ftp.sgi.com/sgi/src/ttcp

[PSG] Carlos M. Pazos, Juan C. Sanchez Agrelo, Mario Gerla, “Using Back-Pressure to Improve TCP

Performance with Many Flows”

[RFC896] J. Nagle, “Congestion Control in IP/TCP Internetworks”, RFC896

[RFC1191] J. Mogul, S. Deering, “Path MTU Discovery”, RFC1191

[RFC2309] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd, V. Jacobson, G.

Minshall, C. Partridge, L. Peterson, K. Ramakrishnan, S. Shenker, J. Wroclawski, L. Zhang,
“Promoting the Use of End-to-End Congestion Control in the Internet”, RFC2309

[RFC2581] M. Allman, V. Paxson, W. Stevens, “TCP Congestion Control”, RFC2581

