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Abstract

Building a distributed middleware infrastructure that

provides the low latency required for massively multiplayer

games while still maintaining consistency is non-trivial.

Previous attempts have used static partitioning or client-

based peer-to-peer techniques that do not scale well to a

large number of players, perform poorly under dynamic

workloads or hotspots, and impose significant program-

ming burdens on game developers. We show that it is

possible to build a scalable distributed system. This sys-

tem, called Matrix, is easily usable by game developers.

We show experimentally that Matrix provides good perfor-

mance, especially when hotspots occur, and that even with

simple algorithms, Matrix’s performance is acceptable to

game players.

1 Introduction

Online gaming is a rapidly growing market segment
(estimated to be USD $5 billion with 100 million play-
ers by 2008 [9]), with major companies such as Mi-
crosoft (Xbox Live) and Sony (PS2 Online) currently
devoting significant resources towards online multi-
player gaming infrastructures. A particularly interest-
ing form of multiplayer gaming is the rapidly grow-
ing [29] class of massively multiplayer online games
(MMOG) such asEverquest[22] and Final Fantasy
XI [23], where hundreds or even thousands of play-
ers from all across the world interact in real-time in a
shared virtual world.

To support these virtual worlds, most MMOGs cur-
rently use a centralized server model, with players
connecting to a single game server that handles the
entire game world. However, studies show that an in-
dividual server can handle at most 30,000 clients [7]
whereas games like Final Fantasy XI claim to have at
least one million registered players [24]. To handle
more players, some MMOGs [7] use multiple servers
that are statically assigned different parts of the game
world, even though this approach is known to be un-
responsive to unexpected workload variations or dy-
namic localized hotspots in the game.

To overcome this limitation, static partitioning
schemes either significantly overprovision the number
of servers used for the game and/or impose artificial
limits on the number of players that can be in any part
of the map. Unfortunately, overprovisioning incurs ex-
tra costs and artificial limits may detract from the gam-
ing experience. It would be better to instead, use a dis-
tributed system that can handle arbitrary game loads
by dynamically and automatically adjusting the num-
ber of servers used by the game in a scalable and effi-
cient manner. This system could either be used on its
own or in combination with static partitioning schemes
(as a mechanism to handle unexpected load changes).

Building this dynamic distributed system for
MMOGs, however, is a non-trivial problem. To pre-
serve the interactive feel of a MMOG, the client re-
sponse latency must be low [3]. But, maintaining
complete consistency between distributed nodes im-
poses quadratically increasing amounts of time as the
amount of traffic and number of nodes in the system
increases (due to increased player activity). On the
other hand, a lack of consistency could lead to an un-
satisfactory experience for the game player. The chal-
lenge lies in satisfying these conflicting latency and
consistency goals, especially for a system with a large
number of nodes and a high volume (O(Gbps)) of net-
work traffic.

The key insight that allows us to overcome this
problem is the observation that MMOGs are an ex-
ample of anearly decomposable system[21]. Such
a system is one in which the number of interactions
among subsystems, in some geometric space, is of a
lower order of magnitude than the number of interac-
tions within an individual subsystem. For MMOGs,
this behavior typically manifests itself through a “ra-
dius” or “zone of visibility” associated with each game
player. It is usually sufficient to update players with
only those events that occur in their zone of visibil-
ity. For example, if a tank is destroyed in a battle-
field game, it is enough to only send this information
to other tanks that can see the victim, rather than to all
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the tanks in the game.

Using this insight, we built a scalable low-latency
distributed middleware infrastructure, calledMatrix,
that provides pockets of locally-consistent state. This
weaker form of consistency allows Matrix to provide
low latency responses, while still giving adequate con-
sistency to game clients even when the number of
nodes in the system increases. Matrix also provides
low latency mechanisms to handle infrequent global
interactions. Ease of use is another key design goal
of Matrix. We achieved this by providing a clean and
clear layering that hides the consistency maintenance
details within an easy-to-use API. This API allows
Matrix to be used with only minimal changes to ex-
isting MMOGs. The layering also allows Matrix to
support the distributed operation of various MMOGs
without actually needing to understand the game logic.
Finally, unlike static partitioning techniques, Matrix
can dynamically add and remove servers as necessary
to handle transient hot-spots and dynamic loads caused
by players joining and leaving the game.

We validated both Matrix’s system-level perfor-
mance as well as its effectiveness at satisfying real
game players. In particular, we show that Matrix’s
overhead is reasonable and also that it outperforms
a statically partitioned system when unexpected load
patterns occur. Finally, we show, via a small user
study, that Matrix, even though it intentionally uses
simple algorithms, is still able to satisfy real game
players.

In Section 2, we describe Matrix’s design criteria
while Section 3 presents the design and implementa-
tion of Matrix. Section 4 describes the Matrix API.
Section 5 presents evaluation results while Section 6
presents related work.

2 Matrix Design Criteria

In this section, we describe the two key design cri-
teria (and their corresponding implications) used to
build the Matrix middleware. In particular, Matrix was
specifically designed to allow MMOG game develop-
ers to focus mainly on their game’s core logic and del-
egate the task of scalably distributing the game to Ma-
trix.

2.1 Attractive and Easy for Game Developers

The first key criteria was to make Matrix attrac-
tive for game developers to use. Most game compa-

nies usually focus on core game-specific technologies,
such as 3D graphics modeling, and typically have very
little in-house distributed systems expertise. Hence,
being able to leverage a distributed game middleware
that scales and maintains adequate consistency as the
user population grows would be of great benefit for
them. To appeal to developers, Matrix has the follow-
ing characteristics:

No Change in Security Model :A primary concern
for online game developers is cheating and denial-of-
service (DoS) attacks. In particular, they are quite re-
sistant to any middleware that will lower their ability
to tackle these issues. This concern naturally elimi-
nates the use of peer-to-peer mechanisms, which fun-
damentally change the client-server interaction and se-
curity model. Matrix thus uses the same client-server
architecture preferred by game developers. This al-
lows developers to reuse existing anti-cheating and
anti-DoS mechanisms.

Separation of Concerns :To make developing dis-
tributed games easier, Matrix provides a clean “sepa-
ration of concerns” programming model where Matrix
handles the distributed computing aspects of a game
such as consistency, scalability, resource provisioning
and fault-tolerance, leaving the MMOG developer to
focus on the core game logic. The Matrix API is pre-
sented in more detail in Section 4.

Support Multiple Gaming Platforms : Game de-
velopers frequently develop games for multiple gam-
ing platforms and having to write new Matrix routines
for each platform would hinder adoption. As shown
in Section 4, Matrix’s API does not require any new
Matrix-specific routines for a new platform.

Simplicity : Building and debugging a large dis-
tributed system is a tricky endeavor as such systems
are difficult to debug. As such, Matrix intentionally
uses the simplest possible algorithms and APIs. The
simple algorithms allow Matrix to be easier to debug
and maintain, while the API allows existing games to
be quickly and easily modified for use with Matrix.

2.2 Supports Game Requirements

The second key criteria was that Matrix must sup-
port the performance requirements of massively mul-
tiplayer games. In particular Matrix must provide:

Low Response Latency : Response latency, the
time between a game client’s action and the observed
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reaction in the game world, is one of the crucial fac-
tors influencing a player’s overall gaming experience.
Matrix ensures that this latency is as low as possible
by not unnecessarily buffering packets and by using
an O(1) route lookup mechanism to determine where
to send packets (explained further in Section 3.2.4).

Localized Consistency : It is vital that Matrix
ensure that the MMOG players are consistent with
nearby objects, thus allowing these players to correctly
interact with these objects. Since MMOGs are nearly
decomposable, it is unnecessary to provide global con-
sistency. Matrix thus provides fast, yet effective, lo-
calized consistency mechanisms (explained further in
Section 3.1).

Automatically Handle Load Spikes : Load spikes
are caused when a large number of players simultane-
ously decide to visit the same location in an MMOG.
It is important that Matrix is automatically able to han-
dle these load spikes without a significant increase in
latency. It would also be useful, to conserve resources,
if Matrix is able to dynamically change its server us-
age based on the current game load. We describe how
we achieve this in Section 3.2.3.

2.3 Scope of This Work

In this paper, we focus primarily on the Matrix ar-
chitecture and API along with mechanisms to provide
low latency localized consistency. We do not address
many other issues that will be needed for a deployed
infrastructure such as smart multicast mechanisms to
eliminate duplicate packets [14] and service-oriented
components, such as user management, authentica-
tion and fraud detection. We assume the availability
of server resources and mechanisms to find these re-
sources. For the evaluation, we assume that resources
can be totally dedicated to a specific MMOG. In prac-
tice, server instantiation mechanisms [20] and virtu-
alization techniques [28] would be used to dynami-
cally create and run multiple MMOGs on the same
server. We also do not describe any new mechanisms
to make Matrix resilient to hardware or software fail-
ures. Instead, we plan to reuse existing technology,
like failover switches and redundant servers coupled
with heartbeat and recovery mechanisms. We also do
not present any new anti-cheating or anti-DoS mecha-
nisms in this paper.

Figure 1: Overlap Region between 3 Matrix Servers

3 Matrix Design and Implementation

In this section, we describe Matrix’s design and im-
plementation, focusing primarily on the overall archi-
tecture and major technology components. In Sec-
tion 3.6, we present an example demonstrating how
Matrix uses its various pieces to support a game.

3.1 Providing Localized Consistency

To build an easy to use localized consistency mech-
anism, we observed that all games have some no-
tion of geometric space that allows distances between
game objects to be computed using a game-specific
distance metric. If Matrix was aware of an individ-
ual game’sspatial coordinatesand itsradius of visi-
bility (the range over which local consistency is typ-
ically required), it could confine the propagation of
any game state update to an easily computable re-
gion, without having to maintain game-specific rela-
tionship trees or other data structures. Matrix uses this
insight to require game developers to merely forward
all game packets, appropriately tagged with the spatial
coordinates (in the game world) of the packet’s ori-
gin and destination, to the local Matrix server. Matrix
uses these spatial tags, together with the game’s radius
of visibility, to route these packets to the other game
servers that manage objects within this radius of visi-
bility (and thus need to maintain consistency with the
original game server).

Matrix assigns unique portions of the MMOG’s spa-
tial map to different servers. Each server is only re-
sponsible for clients located within its assigned par-
tition. Formally, Matrix partitions the overall space
Z of an MMOG into N non-overlapping partitions,
{P1,P2, . . . ,PN}, and assigns each partitionPi to a dis-
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tinct serverSi . To handle load spikes, the number of
serversN, and the specific partition managed by any
serverSi can change dynamically.

Because games have a non-zero radius of visibility,
changes in the MMOG state at any point,σi, handled
by serverSi , that is within the radius of visibility of
a client located on serverSj , must be consistently ap-
plied at both serversSi andSj . In general, given a spa-
tial partition and a radius of visibilityR, every point
σ in Z has a set of servers associated with it, called
the consistency setof σ or C(σ). This set contains
all the servers whose partitions overlap the circle (or
sphere) of radiusR centered atσ and therefore need
to be aware of any update or activity atσ. If d(x,y)
represents the distance-metric between pointsx andy,

C(σ ∈ Pi) = {Sj | j 6= i ∧ ∃σ′ ∈ Pj s.t. d(σ,σ′) ≤ R}
(1)

From Equation 1, we observe that ifR is infinite,
all updates must be globally propagated, making lo-
calized consistency impossible. However, ifR is small
compared to the size of partitionPi, most of the in-
terior points ofPi will have empty consistency sets.
Only the relatively small number of periphery points,
whoseC(σ) 6= /0 (i.e, whose radius of visibility extends
into adjoining partitions) will require consistency to be
maintained between servers. Games usually have lim-
ited player visibility radii and Matrix efficiently uti-
lizes this sparseness by forming groups, called “over-
lap regions”, of all points that have identical non-
empty consistency sets (shown in Figure 1).

Intuitively, an overlap region denotes a portion of
the map, such that an update at any point in that over-
lap region requires all the servers in that overlap re-
gion to be informed of the update. Overlap regions
allow Matrix servers to quickly determine the consis-
tency set for any game packet they receive by merely
doing a table lookup (of the set of overlap regions).
When the overlap region is as large as the entire map,
Matrix effectively becomes a distributed shared mem-
ory (DSM) system [2]. Unlike DSMs, we can con-
strain the overlap regions for MMOGs (because they
are nearly decomposable) using geometric distances
thereby satisfying scalability and latency constraints
that proved to be elusive for DSMs.

Matrix assumes that most players in a game have the
same radius of visibility. The Matrix API does allow

Figure 2: Matrix Architecture

game servers to specify different visibility radii for ex-
ceptions, and internally creates distinct sets of overlap
regions, each for a differentR. We decided to use over-
lap regions instead of other geometric data structures,
like spanners [4], to determine the consistency set of
any object as overlap regions do not require costly (in
terms of latency) hop-by-hop lookups and they work
well even when the map space changes dynamically
(which happens during splits and reclamations).

3.2 Matrix Architecture

Figure 2 shows the Matrix architecture, that satisfies
the design criteria in Section 2. A MMOG is deployed
using Matrix as follows: MMOG developers provide
the game clients and game servers, while the Matrix
infrastructure provides the Matrix servers and a Ma-
trix coordinator (MC). The architectural components
interact as follows:

3.2.1 Game Clients

The clients are used by game players to play the
MMOG. Each client interacts with a game server and
provides it with updates on the player’s activity and re-
ceives updates on nearby activity. Game clients must
be able to switch serversdynamicallyas the MMOG
may be on multiple servers, each handling a unique
portion of the MMOG world. The client is informed
of these switches by its current game server and is un-
aware of the presence of an intermediate Matrix server.

3.2.2 Game Servers

The game server is the software that stores the state
of the game world and coordinates the activity of the
players in the game. In most commercial games,
they are also the only point of contact between game
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clients and the game world to protect against cheating
and unauthorized collusion; problems that are partic-
ularly acute in multiplayer games. The game server
must be designed for use in a multiserver environment.
In particular, it must identify players using globally
unique IDs (such as callsigns) instead of locally gen-
erated IDs. Game servers are usually located on the
same physical machine as a Matrix server (to mini-
mize the network latency). In our current implemen-
tation, the Matrix server is a separate process from the
game server. In the future, we may compile the Matrix
server into the game server (as a separate library) to
improve performance.

When a game server starts, it sends Matrix the vis-
ibility radius of clients in the game (to allow overlap
regions to be correctly computed). The game server
then forwards all client packets (after spatially tagging
them) to its Matrix server for further processing. The
game server also periodically reports its current load
to Matrix. If the server is overloaded, Matrix splits
the game world between the overloaded server and a
newly created game server and informs both the new
and overloaded game servers of their new map ranges.
The overloaded game server then forwards all game
specific state (e.g., map objects such as trees, buildings
etc.) to the new game server via Matrix. Finally, the
overloaded game server redirects any clients (and their
corresponding state) that are not in its new map range
to the appropriate game server (Matrix provides the
identity of the appropriate game server). Moving these
clients to other game servers decreases the load on the
overloaded game server. However, if it is still over-
loaded, Matrix splits the still overloaded game server
again until it has shed enough load.

3.2.3 Matrix Servers

Matrix servers, the heart of our distributed mid-
dleware, provide the necessary consistency, reliabil-
ity and latency semantics for MMOGs. Each Matrix
server is aware of the map range currently managed
by the game server connected to it. On receiving spa-
tially tagged game packets from its game server, the
Matrix server checks its overlap tables, provided by
the MC, to see if any peer Matrix servers are within
that packet’s consistency set. If so, the packet is for-
warded to these peer servers which then forward the
packet, after verifying the packet’s range, to their own
game servers for processing. Because Matrix handles

packet routing, individual game servers do not need to
know about other game servers serving the MMOG.

Matrix splits map partitions using purely local deci-
sions to improve scalability and minimize latency. On
detecting that its game server is overloaded (through
explicit load messages from the game server or via sys-
tem performance measurements), a Matrix server first
checks, using some non-Matrix external entity, for an
available Matrix server. If a server is available, it splits
its current map, keeping control of a sub-portion of the
map, while transferring responsibility for the remain-
ing portion to a new Matrix server. Currently, Matrix
uses a simple “split-to-left” splitting technique where
each map is split into two equal pieces with the left
piece handed off to the new server. This simple al-
gorithm still provides good performance as shown in
Section 5.

The new Matrix server then creates a new game
server and orchestrates the transfer of the global state
needed to play the game, from the original overloaded
game server to this newly-created game server. The
overloaded game server then switches game clients to
this new server to ease its load. The amount of state
associated with switching game clients is usually min-
imal (shown in Figure 6 for the games used to test Ma-
trix) and Section 3.4 details the mechanisms used to
transfer client state. Newly started game servers also
need to obtain the static state of the game, like the
map textures, that can be hundreds of megabytes in
size. However, because this state is static, it can be
pre-cached on all new servers, requiring only pointers
to the cached state to be sent.

The Matrix server that performed the split becomes
the parent of the newly created Matrix server. When-
ever a Matrix server detects that its game server is
underutilized (again, through explicit load notifica-
tions or via system performance measurements), it
first checks if it has any children. If it does and if
their load levels are low enough, the parent Matrix
server reclaims the partition and game state held by
the child. All the game clients on the child’s game
server are transfered to the parent’s game server, af-
ter which the child Matrix server and game server are
removed from the game and returned to the resource
pool. Section 3.5 describes how we prevent oscilla-
tions and ensure stability in the splitting / reclamation
process.
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3.2.4 Matrix Coordinator (MC)

The MC is used to create the overlap tables used
by Matrix servers to route spatially tagged packets.
Whenever a new Matrix server is used for the game,
it informs the MC of the current map range and radius
of visibility of its game server. The MC then computes
the overlap regions for all the Matrix servers in the
game using geometric algorithms to calculate bound-
ing boxes between spatial regions – a particularly easy
computation, using well known axis-aligned bounding
box computation algorithms, if the map partitions are
rectangular in shape. The MC then informs each Ma-
trix server of their overlap regions along with the set,
C(σ), of Matrix servers that should be informed about
an event in that region. The MC recomputes and re-
distributes overlap regions every time a new Matrix
server is used or whenever an existing Matrix server is
reclaimed (the MC is informed of the new map ranges
whenever reclamations occur).

We used a central MC to minimize the latency of
the packet forwarding process. In the common case
where players are only interacting with nearby ob-
jects, each Matrix server can do an instant O(1) lookup
to determine the consistency set for any game packet
using the overlap regions provided by the MC. Even
in uncommon cases involving non-proximal interac-
tions, the Matrix server can consult the MC to de-
termine the consistency set for that particular inter-
action. Matrix could use alternate lookup methods
(such as DHTs [25]), but that would result in increased
latency (e.g., DHT schemes usually needO(log(N))

lookups forN Matrix servers). Although a central-
ized approach can lead to performance bottlenecks,
the MC is only used when the MMOG world parti-
tioning changes due to splits or reclamations (which
should occur infrequently for a stable game). This
centralized approach can scale to large server popu-
lations as the MC is not in the latency-critical packet
forwarding path (except for the rare non-proximal in-
teractions). Experimental evidence, presented in Sec-
tion 5.3.3, shows that the MC does not become a bot-
tleneck even when Matrix scales. The MC can also be
made reliable using well understood replication tech-
niques.

Another possible solution would be to eliminate the
MC and have every Matrix server run a routing pro-
tocol, similar to RIP [16] or OSPF [17], to maintain a
completely up-to-date routing table containing entries

This figure shows 2 different ways to split a Matrix server.
The quad tree split (on top), where partitions are split al-
ternately along the x and y axis, results in areas of the map
having a large consistency set. The bottom figure show the
split-to-left scheme, where partitions are only split along
the x-axis. The overlap regions are shown shaded.

Figure 3: Different Splitting Techniques

for every other Matrix server. However, this adds sub-
stantial programming and debugging overhead to the
Matrix infrastructure as these distributed protocols are
difficult to develop and debug. In addition, the use of
an MC, which has knowledge of the entire Matrix in-
frastructure and overlap regions, allows Matrix to per-
form better repairs in cases where a Matrix server dies.
In summary, the use of an MC provides a simple and
easily verified solution that allows Matrix to perform
O(1) routing and perform efficient global repairs with-
out incurring any significant performance overheads.

3.3 Map Partitioning (Splitting) Strategies

A key challenge was the strategy used for splitting
the map partition managed by an overloaded server.
Ideally, we would like to form balanced sub-partitions,
such that the parent’s workload is equally divided be-
tween itself and its child. A simple “divide the map
by half” splitting technique (as used in Section 3.6)
may not satisfy this requirement as the load may still
be concentrated on one of the servers.

In general, balanced partitioning can only be per-
formed by the game server, because it alone is aware
of the precise spatial skews in the workload. How-
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ever, this could be a difficult task for game develop-
ers to undertake. Matrix therefore provides a simple,
default, splitting algorithm while allowing game de-
velopers to specify more complex and game-specific
splitting mechanisms via the Matrix API if they so
choose. Our simple algorithm is to split the current
map into half along the y-axis and is adequate for sit-
uations where clients are evenly distributed among the
two halves. Clearly, it won’t be as efficient (needing
multiple sub-splits) for very skewed workloads such
as a hotspot caused by a large number of clients in a
small region of the map. However, even in these cases,
Matrix’s performance (shown in Section 5) is still ac-
ceptable.

To preserve Matrix’s ability to scale while keep-
ing latencies low, the splitting algorithm must ensure
that the consistency set associated with any particu-
lar point doesn’t become very large. Some seemingly
simple splitting strategies do not, however, satisfy this
“bounded consistency set” (orBCS) property. For
example, Figure 3 shows a quad tree based splitting
strategy, where partitions are alternately split along
the horizontal and vertical axes. As the diagram il-
lustrates, after multiple levels of splitting, the consis-
tency set,C(σ), for a point close to the center of the
world map can easily be as large as{S1,S2,S3,S4},
even though the radius of visibilityR is smaller than
the size of the smallest partition.

In our current Matrix implementation, we employ a
“split-to-left” strategy, where each parent server splits
its partition (in 2D or 3D) along the x-axis (chosen ar-
bitrarily), and then gives the left half of the split to
the child server, while retaining the right half of the
split. Figure 3 demonstrates this splitting mechanism,
where serverS1 first splits and creates serverS2. Sub-
sequently,S1 splits again to create a new serverS3.
This strategy creates rectangular overlap regions, of
breadth 2∗R, that are easily describable (bottom left
and top right coordinates are sufficient) and satisfies
the following property.

Property 1 If the width ∆ of any partition exceeds
twice the radius of visibility (2∗R), the ‘split-to-left’
strategy satisfies the BCS property, and the cardinality
of the consistency set for any pointσ in the map is at
most 1. If R< ∆ < 2∗R, the BCS property is satisfied
and the cardinality of the consistency set for any point
σ is at most2. Otherwise the cardinality is 2∗⌈R

∆⌉

The above principle shows the central role thatR
plays in the scalability of Matrix. When the size of a
new split is smaller thanR, the consistency set for any
pointσ on the new server will extend beyond its imme-
diate neighbors. Hence,Rdetermines when the consis-
tency set will contain inefficient non-neighboring par-
titions. It also determines how many clients will be
in the overlap regions as shown in Section 5.4. The
width of a partition at depthD is given by L

2D (because
each split divides the current map into half), whereL
denotes the width of the entire MMOG map. Accord-
ingly, the maximum depthDmax to which Matrix can
split before the partition width becomes smaller than
R is given by:

Dmax= ⌊log2 (
L
R

)⌋. (2)

As long as Equation 2 is satisfied, the total num-
ber of overlap regions will not exceedN (= 2D), the
number of deployed servers. Experimental evidence
with various MMOGs, shown in Section 5, suggests
that, while the split-to-left mechanisms is somewhat
inefficient in terms of the number of servers used, it is
adequate in responding to load changes. The develop-
ment of more optimal spatial partitioning algorithms
remains an open research problem for future versions
of Matrix.

3.4 Consistent Low Latency Handoffs

When a client switches from serverGSi to GSj , its
state must also be transfered. Without this state trans-
fer, GSj might reject packets from redirected clients
thinking that they are invalid or malicious. Matrix
uses a combination of client-driven and proactive state
transfer mechanisms to transfer this state as quickly as
possible.

In the client-driven approach, if a game serverGSj

receives game packets from a client that it is not cur-
rently handling and doesn’t have sufficiently fresh
state (for a game-specific parameter), it buffers the
packets and requests the client’s state from Matrix.
The local Matrix server will route this query to nearby
Matrix servers that it shares an overlap region with,
which will in turn pass this request up to their game
servers. This localized query approach is effective, be-
cause clients usually only enter a partition from neigh-
boring partitions. When the dynamic state of the client
is located on a neighboring game server, it is relayed
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back toGSj by Matrix. On certain rare occasions (e.g.,
when a client teleports from one part of the map to an-
other), this localized query may be ineffective, and the
local Matrix server has to broadcast a state-retrieval
query, via the MC, to all servers.

This approach provides eventual consistency at the
cost of large per-client buffers and significant latency
(oftenO(secs)), as the client is effectively frozen until
its state is retrieved. To reduce this latency, Matrix also
uses pro-active (Matrix-driven) state transfers. When-
ever a Matrix server discovers that a client needs to
be switched (game servers contact Matrix to discover
where to switch clients), it proactively requests the
client’s state from its game server and forwards it to
the target game server. This approach eliminates most
of the state retrieval latency even for teleportation-like
events.

3.5 Preventing Oscillations and Ensuring
Stability

As stated earlier, splits and reclamations are trig-
gered by server load-based thresholds. To prevent sys-
tem oscillations, the high (splitting) and low (recla-
mation) thresholds of the load metric must satisfy the
following property:

∀{x1,x2}, ((L(x1) < Tl )
V

(L(x2) < Tl )) (3)

=⇒ (L(x1 +x2) < Th)

where L is the load function,x1 andx2 are measured
raw load values andTl and Th are the low and high
thresholds respectively.

Equation 3 ensures that reclaimed nodes, without
sudden load changes, will not immediately split after
being reclaimed. At runtime, we also use an additional
hysteresis function to prevent oscillations caused by
loads fluctuating close to the thresholds. To ensure
that the split / reclaim process is stable, only parents
are allowed to reclaim children and no server can be
both splitting and reclaiming (or in the process of be-
ing reclaimed) at the same time.

3.6 Matrix in Operation

We illustrate how the four Matrix components in-
teract through a simple example using a 2-D game
with a rectangular map of dimensions 500X1000 units.
Assume that the radius of visibility for all clients is
R = 100 units and that a game server becomes over-
loaded when it has 3 or more clients and underloaded

when it has 1 or less clients. All partitions in this
example will be rectangular in shape and represented
by their bottom-left and top-right coordinates. Thus,
{(0,0),(500,1000)} represents the entire game space.
A Matrix server (S1) starts the initial game server
(GS1) and is informed byGS1 that it is responsible for
the entire ({(0,0),(500,1000)}) space with a visibil-
ity radius of R. S1 forwards this information to the
MC which does nothing as there are no overlap re-
gions at this point in time. ClientscA andcB then con-
nect to serverGS1 and start playing the game.GS1

forwards every game packet, tagged with their spatial
coordinates, toS1, which simply discards them as each
packet’s consistency set is null.

A new client,cC, now joins the game. Let the in-
stantaneous locations of the three clients be(20,20),
(150,900) and(450,700) respectively (Figure 4a). At
this point, serverGS1 becomes overloaded (because
it is currently serving 3 clients) and informsS1 of that
fact. S1 starts the splitting process and informs the new
child Matrix server (S2), found via an external discov-
ery mechanism, that it is going to be used for the game.
S2 then starts a new game serverGS2 while S1 decides
how to split the game map between itself andS2. In
this case, the map is split in half, leavingS1 to manage
the partition{(0,0),(250,1000)}, while assigningS2

the partition{(250,0),(500,1000)}. S1 informs GS1

of its reduced spatial responsibility (S2 also informs
GS2 of its spatial responsibility), and requests from
GS1 the game-specific objects and state for the por-
tion {(250,0),(500,1000)} that GS1 was previously
managing. This state (which remains opaque to Ma-
trix) is forwarded toS2, which relays it toGS2, thus
initializing GS2 with the state needed to manage its re-
gion of the world. The MC is informed of the new
map ranges for bothS1 andS2 and calculates overlap
regions for them. In this case,S1’s overlap region is
{(250−R,0),(250+R,1000)} with a consistency set
of {S2}. S2 has the same overlap region with a consis-
tency set of{S1} (Figure 4b). Anytime a client enters
this region of space, the client’s actions is forwarded
to the other Matrix server.

GS1 checks if any of its current clients need to be
switched toGS2 and discovers thatcC needs to be
switched.GS1 sends a request toS1 stating that client
cC at position(450,700) needs to be switched.S1 con-
sults its internal routing tables, discovers thatS2 is re-
sponsible forcC’s map range, and tellsGS1 to switch
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Figure 4: Matrix in Operation Example

cC to GS2. GS1 then sends the state associated with
cC to GS2 (via S1) and tellscC to connect toGS2. cC

connects toGS2 and continues playing the game with
minimal interruptions (asGS2 has all the state associ-
ated withcC).

GS2 now has only 1 client and informsS2 that it
is underloaded. However, becauseS2 has no chil-
dren, no further action is taken. After some time,
cB leaves the game causingGS1 to also become un-
derloaded (Figure 4c).S1, on receiving this infor-
mation, queries its child (S2) for its current load.S2

queriesGS2 for its current load and replies toS1 that
it is currently underloaded.S1 proceeds to reclaimS2

(because the loads onS1 and S2 satisfy the require-
ments explained in Section 3.5) by reclaiming the map
range{(250,0),(500,1000)} from S2 and informing
GS1 that its new map range is{(0,0),(500,1000)}. S1

then sendsGS1 all the game state associated with the
reclaimed partition (received fromGS2 via S2). GS2

switches its client,cC, to GS1 using the process men-
tioned above. The MC is informed of the new map
range ofS1 and thatS2 has been reclaimed. Finally,
S2 kills GS2 and puts itself back into the available re-
sources pool (Figure 4d).

4 Matrix API: Specification and Use

In this section, we describe the API that makes it
easy for game developers to use Matrix along with our
implementation experience in modifying games to use
Matrix.

4.1 Game Client API

Game clients have no direct knowledge of Matrix
and only need to be able to switch game servers dy-
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int matrix_connect (char * servername, int port);

int handle_matrix_commands (int fd);

int send_map_range (int fd, map_t range);

int receive_map_range (int fd, map_t &range);

int send_visible_radius (int fd, radius_t radius);

int receive_overlap (int fd, overlap_t &overlap);

int send_load (int sockfd, int load);

int client_switch_query (int fd, client_t split);

int client_switch_reply (int fd, client_t &split);

int send_state (int fd, static_t static);

int receive_state (int fd, static_t &static);

// radius is used for packets with non standard visibility radii

int send_spatial_packet (int fd, pos_t src, dest, char *msg, int msg_len,

radius_t radius);

int specify_map_split_point (int fd, split_t split);

Figure 5: API used between Matrix and game servers

namically while playing the game (either directly or
via a proxy). Game clients designed for multiserver
games should already be able to do this.

4.2 Game Server API & Modifications

Game servers need to implement the functional-
ity, shown in Figure 5, to support the Matrix API.
In particular, the game server must connect to Ma-
trix on startup (a Matrix networking library is pro-
vided). It must also identify the coordinate system
used by the game and report it, along with the size
of the game world and the common visibility radius
(determined by the game developer), to the Matrix
server when requested. Finally, it must send any-
thing that affects the game world to Matrix tagged
with the coordinates of the point in the game world
that is affected (the Matrix networking library pro-
vides routines to do this). To send non-proximal pack-
ets, the game server must set thedest argument of
send spatial packet accordingly. Global broad-
cast packets can also be sent by setting the optional
overlap argument insend spatial packet to a
larger overlap radius just for that packet.

To report the current game load, developers can ei-
ther write a game-specific load monitor(with appro-
priate thresholds that satisfy Equation 3) or let Ma-
trix calculate the load from system parameters such
as memory usage or network throughput. When us-
ing system parameters, developers can either specify
the thresholds (wrong thresholds can cause bad game
performance) or use Matrix-supplied values.

Whenever an object moves in the game world, the
game server must check if the object is still within its
map range. If it isn’t, the game server must tell the
object to switch to the correct game server (Matrix is
consulted to determine the correct server) or switch the
object itself (if it’s a non-player object such as a mon-
ster). Matrix will handle the state transfer necessary
for moving the object as explained in Section 3.4. The
hardest game server modifications are, the routines to
exchange state with Matrix as this usually requires
packing various internal data structures into a packet
stream to send to Matrix. These routines also usually
need to be highly optimized to achieve good perfor-
mance. Game servers must also be able to receive this
packet stream from Matrix and recreate the state after
verifying that it is fresh (by comparing timestamps).
Before accepting clients, game servers must check if
they are new players (possibly by asking a 3rd party
registration service or by accepting a cookie from the
client). If the client isn’t new, the game server must
ensure that it has sufficiently fresh state for that client.
Otherwise, it must request the state from Matrix and
prevent the client from entering the game until the state
has arrived. The time period after which state is con-
sidered stale is game specific and set by the game de-
veloper.

4.3 Implementation Experience

Our experience indicated that game servers can be
modified to work with Matrix in a very short amount
of time. For this paper, three real games (described
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further in Section 5) were modified to use Matrix. It
took us between 8 to 16 hours per game to integrate
the game with Matrix. However, this excluded the
time needed to understand these games (to determine
how state was kept in the server, what the spatial co-
ordinates of the game were, etc.). It also excluded the
time needed to make these games multiserver compat-
ible. These games used non-unique local ids (like ar-
ray indices) to identify individual players as they were
designed for single server use. Hence, even though
Matrix integration was easy, the games were unable to
handle packets from other servers due to id collisions.
It required about 1 week to convert each game to use
globally unique player ids, like callsigns, before they
worked properly with Matrix. This is not a Matrix lim-
itation: any multi-server game would require globally
unique ids.

The 8 to 16 hour modification times are thus in-
dicative of how long game developers, who understand
their multiserver-friendly games well, need to imple-
ment the Matrix API calls (shown in Figure 5) and sup-
port the requirements outlined in Section 4.2. We feel
confident that these times are low enough that Matrix
integration is not a bottleneck for game developers.

5 Performance Evaluation
In this section, we evaluate the performance of Ma-

trix. Our evaluation goals were to show that even with
its simplicity, Matrix is able to both satisfy real game
players and achieve good system-level performance.
We answer the first question through a small user study
of Matrix with a real game (shown in Section 5.2).
To answer the second question, we performed system
level measurements (shown in in Section 5.3).

5.1 Test Games

Unfortunately, we were unable to obtain the source
code for any real MMOG as game developers were
unwilling to release their proprietary game sources.
Thus, we resorted to using three open source games
that are representative of some commonly encountered
MMOGs:

• Bzflag [19] (version 1.72g2) is a popular open-
source tank game that allows up to 200 players in
individual tanks to fight against one another (in-
dividually or as teams) on a single server using
a variety of weapons. Bzflag, initially released in
1993, is still being actively played and developed.

• Quake2 by Id Software[11] (version 3.20 re-
leased under the GPL license in 2002) was re-
leased in 1998 and is one of the best selling first-
person shooting games ever with over 1.2 mil-
lion copies sold worldwide. It features a heav-
ily armed soldier fighting against hordes of alien
enemies. Its multiplayer component allows up to
256 players to compete against each other, on a
single server, in “deathmatch” style games where
each player fights against every other player.

• Daimonin[27] (version 0.95b2) is one of the few
open source role-playing games. It is still in early
development, but already allows multiple players
to enter a world map (on a single server) and go
on quests, find treasure, defeat monsters and in-
teract with other players. In Daimonin, like other
role-playing games, the goal is to gradually in-
crease the ability of one’s character through var-
ious adventures and interactions with other game
players.

In general, first person shooting games have stricter
latency requirements and send more update packets,
while role-playing games store a lot more player state
(as players can engage in many more activities). This
is shown in Figure 6 which lists the actual runtime
parameters that were measured for each of the three
games.

We modified each game to work with Matrix. We
also developed robot clients for each game that were
able to move freely in the game world and could be
switched to different servers by Matrix. The dis-
tributed implementation of Bzflag is fully functional
and human players of Bzflag were used for the user
study shown in Section 5.2. Even though Quake2
and Daimonin were modified to use a globally unique
namespace, we have not extensively tested their game
clients with human players.

5.2 User Study Evaluation

In this section, we present the results of a small user
study, involving real game players, that was designed
to answer the following questions:

1. How do players perceive the movement of their
in-game avatars under different loads in a multi-
server Matrix-enabled game?
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Bzflag Quake2 Daimonin

Map Range 800x800Highly Variablea 24x24 tilesb

Visibility Radius 200 400 24

Max Playersc 200 256 1024

Spatial Packet Size (Bytes) 98 60 18 - 40

Packet Send Rate (packets/s) 0 - 60 0 - 200 0 - 3

Client Velocity (map coords/s)d 0 - 40 0 - 40 0 - 5

Dynamic State Size (KBytes)e 394 182 2198

adepends totally on the map being played
bThe world is built using multiple 24x24 map “tiles”
chard player limits before the game was modified to use Matrix
dmeasured maximum and minimum client movement rates
eamount of player state that must be sent when switching servers

Figure 6: Measured Runtime Values of the Test Games.

2. How do players perceive the movements of other
players’ avatars under different loads in a multi-
server Matrix-enabled game?

3. Is the Matrix splitting / reclamation mechanism
noticeable to game players?

For this experiment, we used a version of Bzflag that
allowed players to move freely in the game world and
fire at other tanks in the game. We disabled the ability
to actually kill tanks (and to be killed) to prevent play-
ers’ tanks from dying during the experiment. We used
two different scenarios for this experiment. The first
scenario used 4 different loads ranging from 40 to 160
robot tanks, that had update rates of 100ms each (each
client updates the server every 100ms and receives up-
dates from server as necessary), in increments of 40 to
simulate a first-person shooting (FPS) game. The sec-
ond scenario used 4 different loads ranging from 100
robot tanks to 400 robot tanks, that had update rates
of 1s each, in increments of 100 to simulate a role-
playing game (RPG).

For each scenario, the highest load level was cho-
sen so as to subject the system to extreme conditions.
We started the test by showing the players the perfor-
mance of a lightly-loaded game running on Matrix as
well as a heavily-loaded game running on Matrix. In
both cases, Matrix was using only a single server so
the game experienced no overhead. We then varied the
configurations and asked the players to rate the perfor-
mance of a game at each configuration. The ratings

were from 1 (lightly loaded / no effect on game per-
formance) to 7 (heavily loaded / game is horrible to
play) as normalized by our initial demonstration. Five
people participated in this study.

To answer the first question, we statically split the
game between two Matrix servers and asked the play-
ers to travel around the perimeter of the game world
under various load conditions. This movement pattern
guaranteed that participants crossed the server bound-
ary two times, requiring Matrix to switch the player
two times between servers. After traversing the entire
perimeter of the game world, we asked participants to
rate the performance of the game.

To answer the second question, we created two spe-
cial tanks in the game. One tank was positioned at
a strategic point in the game where it could observe
objects moving across the server boundary. All the
players were asked to look at the display for this tank
(to ensure that the scenario for this test was common
across all players). The other tank was controlled by
an experimenter and it proceeded to cross the Matrix
server boundary at least three times (switching servers
each time) at a point visible to the other tank. After ob-
serving these server crossings, the players had to rate
the performance of the game; in particular whether
the movement of the experimenter’s tank was smooth.
Figure 7 shows the average user perception for the
first and second questions for the various scenarios and
load levels.

To answer the third question, players were asked
to monitor the movements of the experimenter’s tank
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(a) Personal Game Experience (b) Observed Switching Time

The two Figures show the average user rating by test game players when using Matrix for two different scenarios. The loads
(load 1, load 2, load 3 and load 4) for the RPG Scenario were 100, 200, 300 and 400 tanks respectively with 1s update rates
and 40, 80, 120 and 160 tanks for the FPS Scenario with 100ms update rates. The average user rating was a linear score
that ranged from 1 (lightly loaded / no effect on game performance) to 7 (heavily loaded / game is horrible to play).

Figure 7: Results of User Study

(by looking at the experimenter’s display) while robot
tanks were repeatedly inserted and removed from the
game. For this experiment, the game was initially run
on just one server with a high load threshold of 50
tanks and a low threshold of 10 tanks. After some
time, 120 FPS robot tanks (100ms update rate) were
introduced into the game all at once. This caused Ma-
trix to split the game across two servers and switch
tanks accordingly. Some time later, the 120 robot
tanks were removed all at once causing Matrix to re-
claim the entire game onto a single server. This pro-
cess was repeated multiple times. During all this, the
experimenter’s tank was traversing around the game
world and shifted servers several times as a result of
splits / reclamations. After allowing the players to
observe five server splits and reclamations, they were
asked to rate the performance of the game. We then
repeated this experiment with 300 RPG tanks (1s up-
date rate). The average user rating was 3 (std. = 1.73)
for the FPS scenario and 3.4 (std. = 2.07) for the RPG
scenario.

Overall, the user study suggest that players found
the latency, including the client switching latency, of
the Matrix-enabled game to be acceptable except in
the extreme cases where the servers were overloaded.
The latency when Matrix split and reclaimed servers
in response to load was also acceptable. An interest-
ing side effect of this study was that we could ob-
serve how users perceive the same events very dif-
ferently. Our average scores and standard deviations

were raised greatly because of only one user who had
a very different perception from the other four players
– even for experiments where the players observed ex-
actly the same game behavior (they were all looking
at the same screen). For example, if we discount this
user’s scores, the average user rating for the third ques-
tion becomes 2.25 and 2.5 for the RPG and FPS sce-
narios respectively. More importantly, the standard de-
viations dropped to 0.5 and 0.58 (from 1.73 and 2.07)
respectively. This effect was seen for the results in
Figure 7 as well. However, even with this user’s re-
sults taken into account, Matrix still performed well.

5.3 System Level Measurements

In this section, we validate the system-level perfor-
mance of Matrix. We analyze the ability of Matrix
to adapt to hotspots in Section 5.3.2 and measure its
overhead in Section 5.3.3.

5.3.1 Experimental Platform

For this evaluation, we implemented all the core
components of Matrix, except for the reliability com-
ponent. The current version of Matrix, written in C,
exports the API shown in Figure 5, uses a MC to obtain
routing and overlap information and performs the lo-
calized consistency, state transfer and on-demand pro-
tocols explained in Section 3. The experiments were
performed on HP Omnibook 6000 notebooks with 256
MB of memory, a 20 GB hard disk and a 1 GHz
Mobile Pentium 3 processor running Redhat 7.2 on a
2.4.18 linux kernel.
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Figure 8: Break Point of a Single Server

For all experiments, we used the number of players
in the game as the load metric. We conducted load
tests, for all 3 games, on a single server. From the re-
sults (shown in Figure 8), we set the high (splitting)
load threshold (Section 3.5) for Bzflag and Quake2
to 300 clients each and Daimonin to 800 clients. We
set the low (reclamation) thresholds at 200 clients for
Bzflag and Quake2 and at 600 clients for Daimonin.

5.3.2 Adapting to Hotspots

In this section, we compare the performance of Ma-
trix against a static partitioning scheme (because these
schemes are used by commercial MMOGs) in cases
where the load changes dynamically (such as when
hotspots occur). We changed the load by using dif-
ferent client population distributions (because the load
metric was the number of players in the game). We
performed the measurements using a small number of
servers. We used four notebooks that had no resource
limits imposed on them as Matrix servers (they also
ran the game servers), one notebook as a dedicated
MC, and three notebooks to generate clients. For each
experiment, we sampled the server queue length and
number of clients on each server at 0.1 second inter-
vals. We did not measure client metrics such as client-
perceived latency as they are influenced by many fac-
tors (such as swapping on the client machine) beyond
Matrix’s control. Note that the user study (Section 5.2)
attempted to quantify client-perceived latency. For this
section, we measured the server queue lengths as they
can be used to meaningfully compare different parti-
tioning schemes because larger queue lengths will in-
crease the client latencies.

In the first experiment, for Bzflag and Quake2, we
created a hotspot, at a particular point on the map,

This shows the effect of 300 clients moving to one server
simultaneously. The number of clients is read off the right
Y-axis

Figure 9: 300 Client Hotspot (Static Partitioning)

caused by 300 clients. For this experiment, we stat-
ically partitioned the game between two servers, with
each serving half of the game world. Figure 9 shows
the number of clients and receive queue length for the
server that had the hotspot. From the figure, we see
that the server had to handle all of the clients (the num-
ber of clients line remains at or very near 300) and its
receive queue length increased as a result. The server
was able to handle the load (its receive queue length
did not increase uncontrollably), but only barely. We
were unable to test the static partitioning with larger
hotspots as that ended up killing the server with the
hotspot. Note that if the clients were randomly dis-
tributed, the static partitioning would have done well
because it could have shared the load with the other
server. However, any a-priori static partitioning will
always remain susceptible to unpredictable hotspots
that cannot be shared between the static partitions.

Matrix is, however, able to handle even dense
hotspots. Figure 10 shows an experiment in which a
hotspot of 600 clients, far higher than the static par-
titioning could handle, was introduced at around the
10 second mark for about 75 seconds, after which the
entire hotspot gradually disappeared (indicated by 200
clients disappearing at fixed intervals). The hotspot
was reintroduced at a different position in the world
at 170 seconds, for about 50 seconds, and then grad-
ually removed. Matrix relieved the initial spike in the
receive queue caused by 600 clients joining (shown
at time=10 in Figure 10) by spawning server 2 (at
time=10) and giving it half the map. However, this
did not ease the load as the hotspot was on the map
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(a) Number of Clients (b) Server Queue Length

This Figure shows Matrix responding to hotspots caused by 600 clients. The left graph shows how the total number of
clients were shared among the various servers. Note that a server is overloaded when it has 300+ clients. The right graph
shows the receive queue length of the various servers. Matrix used up to four server to handle the load caused by the
hotspots. However, Matrix reclaimed those extra servers asshown by the reclamation points on the left graph when the load
eased. The second reclamation took longer as the child server took longer to become underloaded (< 150 clients).

Figure 10: Hotspot caused by 600 clients

portion retained by server 1. Hence, server 1 spawned
another server, server 3, (at time=10) and split its cur-
rent map with it (servers 1 and 3 have 1/4 of the
map each with server 2 having the rest). Server 3’s
map range contained the hotspot and a large number
of clients were switched to it easing server 1’s load.
However, server 3 now experienced a load spike (at
time=60). This process continues recursively until the
load on all the servers is acceptable. As clients leave
the game, servers become underloaded and Matrix re-
acts by consolidating the load onto a smaller number
of servers. For example, after 200 clients left the game
(at time=75), server 3 became underloaded and re-
claimed its “child” server (server 4). Matrix was sim-
ilarly able to handle the subsequent appearance and
disappearance of another hotspot (introduced at t=170)
located at a different part of the map.

This result clearly demonstrates that Matrix, unlike
static partitioning schemes, is able to deploy addi-
tional servers to react quickly and effectively to sud-
den load changes. This is significant, because game
developers no longer have to a-priori over-provision
their servers to prevent them from crashing (which
would mar the game’s reputation) under unexpected
load spikes. These spikes could occur when particu-
lar areas in the game become popular suddenly, like
the town hall during a town meeting, or by a massive
influx of new game players entering the game (possi-
bly due to an advertising campaign or a reference on

Slashdot).

5.3.3 Matrix Overhead

In this section, we present microbenchmarks for
Matrix’s client switching time and bandwidth usage
using the same scenarios and loads used in Section 5.2.

Time Taken to Switch Game Clients : Figure 11
shows the time required to switch clients between Ma-
trix servers for different loads. This is the time from
when a game server determines that a player needs
to be switched to the point where it receives a reply
from Matrix and can switch the player. This includes
the time needed to transfer the player’s state between
servers. These results were obtained by running var-
ious loads for 5 minutes on a two server statically
partitioned Matrix setup. The switching time is low
(< 0.03s), from the Figure, until the point where the
game server becomes overloaded. Then the average
and maximum switching times increase (the maximum
can jump to≈ 19s), along with the standard deviation.
In practice, Matrix avoids these situations by adding
new servers before the load becomes intolerable.

Network Traffic Sent Between Matrix Servers:
Figure 12 shows the amount of overlap traffic sent
between Matrix servers for different sized overlap re-
gions. As expected, the overlap region size directly af-
fected the bandwidth usage of each server. For exam-
ple, for 80 clients, the overlap traffic ranged from 27
KB/s (100% overlap between the servers) to 0.9 KB/s
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No. of Clients, Update RateAvg. (s) Std. Max. (s) Min. (s)

RPG Scenario

100 @ 1s 0.0024 0.0024 0.0144 0.0004

200 @ 1s 0.0077 0.0280 0.2752 0.0002

300 @ 1s 0.0123 0.0590 0.6955 0.0005

400 @ 1s 1.6284 4.0582 19.2887 0.0004

FPS Scenario

40 @ 100ms 0.0017 0.00329 0.0213 0.0003

80 @ 100ms 0.0042 0.00889 0.0735 0.0004

120 @ 100ms 0.0308 0.21181 1.9839 0.0003

160 @ 100ms 0.0471 0.34311 4.0482 0.0003

This Figure shows the time taken to switch clients (with different update rate) between Matrix servers under different player
loads. The average time, standard deviation along with the maximum and minimum times taken to switch a client are
presented.

Figure 11: Time to Switch Clients Between Matrix Servers

Each line denotes a different overlap region size (50% says
that half the partition overlapped with another server). The
clients all had update rates of 100ms.

Figure 12: Bandwidth Used by Overlap Traffic

(5% overlap). In contrast, the MC only exchanged
≈200 bytes with each Matrix server for every server
split or reclaimed. These results suggest that for Ma-
trix to scale, the overlap region must be small relative
to the partition width.

5.4 Simple Asymptotic Analysis

The previous sections have shown a) that Matrix
can satisfy actual game players, b) that it has ex-
cellent performance when hotspots occur (especially
compared to static partitioning schemes), and c) that it
has low overhead for a reasonable number of clients

and servers. In this section, we show how Matrix
can scale to a large number of clients. Since it is
not possible to perform real world evaluations of Ma-
trix’s performance for our target environment of 1 mil-
lion+ players and 1000 or more servers, we use ana-
lytical techniques to extend the detailed results from
the small scale evaluations of individual games to pre-
dict Matrix’s performance as the number of players in-
creases. Even though such an analysis has limitations,
it still provides useful insights into the scalability of
Matrix. The analysis attempts to answer the follow-
ing two questions: As the client population increases,
how does the amount of consistency maintenance traf-
fic sent between Matrix servers increase? Similarly,
how does the amount of state traffic sent as clients
switch between game servers increase? For Matrix to
scale, both these two types of traffic should increase at
most linearly with the number of clients in the system.

We analyze the asymptotic behavior of Matrix with
a generic game, that uses a global map ofWxL units
with a visibility radius ofR. We reuse our “split-to-
left” strategy and split partitions along theL dimen-
sion, creating rectangular regions with constant width
W. For this analysis, we assume that the user popula-
tion is uniformly distributedover the entire map. Let
the total number of users beU and the client density
(computed asU

W∗L ) beρ. Since the client distribution is
uniform, Matrix will split to a uniform depthD, with
2D equal-sized partitions, along all paths in the tree.
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Let each server’s high load threshold beTh. The max-
imum partition length,l , that a server can have before
splitting is given byρ∗ l ∗W ≤ Th. The number of Ma-
trix servers,N, required to supportU clients is⌈U

Th
⌉,

with the length of each partition given by⌈U
Th
⌉. Since

a depth ofD implies a partition length ofL2D , to sup-
port a user population of densityρ, Matrix must split
to a depthDreq given by⌈log2(

U
Th

)⌉.

5.4.1 Consistency Maintenance Overhead

If each client generatesB bytes/sec of traffic, the
amount of client traffic per second that needs to be
forwarded will be given byB∗ ρ ∗min(2R, l) ∗W (as
ρ ∗min(2R, l) ∗W = number of clients in the overlap
regions). Since this traffic must be forwarded to the
corresponding consistency set (obtained from Princi-
ple 1, we can express an upper bound on total update
traffic (in bytes/sec), both sent and received by a single
server as:

U pdate= 2∗B∗ρ∗min(2R, l)∗W ∗2∗⌈
R
l
⌉1, (4)

5.4.2 Client Switching Overhead

An increase in the client populationU can cause
clients to switch more frequently between servers,
with associated state transfer costs, especially as each
partition gets smaller after multiple splits. To esti-
mate this overhead, we assume that each client ex-
hibits a modified fluid-flow movement model [26],
with velocity v, and a direction uniformly distributed
between(0,2π). The fluid flow analysis technique
of Thomas [26] shows that the total rate of partition-
crossings from a rectangular partition of widthW and
length l , via the twoW edges, is actually indepen-
dent of l and given byρ∗v∗2∗W

π . If we assume that
each client switch requires a state transfer overhead of
S bytes, the total (incoming and outgoing) switching
overhead per second per server is given by:

Hando f f = 2∗S∗
ρ∗v∗2∗W

π
. (5)

1Note that this equation assumes, pessimistically, that a Matrix
server unicasts update packets individually to every member of
the consistency set. In practice, the packet forwarding overhead
on the network interface of the Matrix server could be lowered
significantly by using network-layer multicasting protocols.

5.4.3 Results of Analysis

Equations 4 and 5 show that asymptotically, the
amount of update and handoff traffic per Matrix server,
similar to the number of deployed serversN, only in-
creases linearly with the number of users. To under-
stand the implications of these equations on our cho-
sen 3 games, we use the measured runtime parameters
of each of these games (shown in Figure 6 to com-
pute theU pdateandHando f f overheads for different
client population valuesU .

Figure 13 shows the computation results: as ex-
pected, the update overhead is the dominant factor
in determining Matrix’s scalability (as replicating up-
dates is a much more frequent event than switching
clients). Figure 13a, strongly suggests that to effec-
tively scale to a large number of clients, we need to
use a large map size. This is intuitive as the smaller the
map size, the larger the client density which will result
in a much larger number of clients being in overlap re-
gions. At the largest map size with 1.5 million clients,
the update rate is about 300 MB/s, while the smallest
map size requires an exorbitant 6 GB/s. For this ex-
periment, the amount of client traffic received by each
game server was≈3.6 GB/s (maximum 30000 clients
each sending 12KB/s). Matrix thus significantly re-
duces, for a reasonably large map, the amount of client
traffic that needs to be sent to other servers. These
numbers also show that supporting a large number of
clients, on today’s machines, will not be possible with-
out either a significant breakthrough in I/O bandwidth
or by drastically reducing the number of clients on
each server.

The figure also suggests that hotspots (smaller maps
are equivalent to hotspots, both of which are character-
ized by higher client densities), can also be managed
as long as Matrix doesn’t split into inefficiently small
partitions (such as maps smaller than 10000x10000).
From Equation 4, other approaches to improving
the scalability of Matrix would include reducing the
packet send rate for game clients (although this may
cause loss of synchronization between a game client
and its server), transmitting smaller-sized packets per
update (even though this might reduce the sophistica-
tion of the game), using a smaller radius of visibil-
ity (although this will lower the degree of interaction
among players), and better use of network-layer mul-
ticast.
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(a) Consistency Maintenance Overhead (b) Client SwitchingOverhead

The graphs show the consistency and client switching overhead for different sized square maps (for simplicity). The high
load threshold was set to 30000 players. To compute the consistency overhead graph, we used Quake 2’s spatial packet size
(60) and maximum packet send rate (300) as it had the highest update rate among the 3 games. The jump in the smallest
sized map line occurs when the consistency set size changes becausel < R. For the client switching overhead, we used
the client movement velocity of Quake 2 (40) and the state transfer size of Daimonin (2198) to see what the worst possible
switching overhead might be.

Figure 13: Overhead of Matrix

6 Related Work

There have been previous attempts at using scalable
“grids” of servers to build distributed architectures for
MMOGs [5, 20]. However, these solutions are still
mostly in a formative stage. Peer-to-peer (p2p) ar-
chitectures have also been proposed as a solution for
MMOGs [12]. In these systems, players form local-
ized groups and exchange messages directly with other
players in the group, thereby allowing the system to
scale. However, these mechanisms are unable to ef-
fectively handle hotspots and they do not clearly sep-
arate the game from the infrastructure, requiring each
game to be intimately designed with the p2p network
in mind. They also allow players to directly exchange
game messages with one another, compounding the
problems associated with collusion and cheating.

Commercial MMOG systems, such as Ev-
erquest [22] and Final Fantasy XI [23], carefully
partition the game world between different servers
to reduce the communication overhead between
servers. To handle hotspots, they allocate multiple
tightly-coupled (completely consistent) servers to
handle the same partition, an approach that is neither
efficient nor very scalable. Instead, Matrix techniques
could be used by these systems, together with careful
static partitioning, to efficiently and effectively handle

hotspots and load fluctuations.

The notion of radius of visibility has been used ex-
tensively in the field of computer graphics where only
objects in the immediate field of view are rendered.
We apply this technique to the domain of multiplayer
games. The use of localized consistency has also been
used in previous systems to achieve lower latency up-
dates at the expense of complete correctness. These
include distributed shared memory systems [2, 13],
databases [1, 6], and network protocols [10]. Unlike
these previous systems, multiplayer games are nearly
decomposable. This allows Matrix to use localized
consistency to reduce latency without sacrificing any
correctness.

Finally, there have been a number of algorithms to
split virtual worlds among different servers. These in-
clude algorithms optimized for reducing inter-server
communications [15, 18] and for preserving local-
ity [8]. Our work complements these solutions. Ma-
trix can use these algorithms to perform more optimal
splits.

7 Conclusion and Future Work

In this paper, we have shown that it is possible
to build, using localized consistency and on-demand
mechanisms, an easy to use distributed middleware
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architecture that is able to satisfy the latency and
scalability requirements of MMOGs. We have im-
plemented Matrix and used its simple API to make
three games (BzFlag, Quake2 and Daimonin) Matrix-
compatible. The Matrix design is specially attractive
because of its layered approach; by completely shield-
ing the game from the actual mechanisms used to im-
plement consistency, reliability and map partitioning,
Matrix allows a game developer to use it with almost
no modifications to the game client, and relatively sim-
ple modifications to the server code.

Experimental results show that Matrix outperforms
static partitioning schemes when the workload exhibits
unpredictable and dynamic skews. We also show, via
a small user study, that Matrix, even with simple algo-
rithms, is able to satisfy real users.

We plan to test the effectiveness of alternative split-
ting algorithms in the near future. In particular, we
plan to investigate how easy it would be to use algo-
rithms that keep track of where objects are in the game
world and use that information when making splits.
We also plan to investigate the effects of using het-
erogeneous servers (in terms of computational or net-
working capabilities) with Matrix. In particular, we
plan to investigate what happens to Matrix if one or
more servers starts slowing down while a game is be-
ing played (due to excess load or other factors), and if
this situation can be resolved by dynamically adjusting
the server thresholds. Finally, we plan to test Matrix
with real MMOGs as soon as practicable.
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