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Abstract
Remote execution can transform the puniest mobile device

into a computing giant able to run resource-intensive applica-
tions such as natural language translation, speech recognition,
face recognition, and augmented reality. However, easily par-
titioning these applications for remote execution while retain-
ing application-specific information has proven to be a difficult
challenge. In this paper, we show that automated dynamic re-
partitioning of mobile applications can be reconciled with the
need to exploit application-specific knowledge. We show that
the useful knowledge about an application relevant to remote
execution can be captured in a compact declarative form called
tactics. Tactics capture the full range of meaningful partitions
of an application and are very small relative to code size. We
present the design of a tactics-based remote execution system,
Chroma, that performs comparably to a runtime system that
makes perfect partitioning decisions. Furthermore, we show
that Chroma can automatically use extra resources in an over-
provisioned environment to improve application performance.

1 Introduction

Remote execution can transform the puniest mobile de-
vice into a computing giant. This would enable resource-
intensive applications such as natural language trans-
lation, speech recognition, face recognition, and aug-
mented reality to be run on tiny handheld, wearable
or body-implanted platforms. Nearby compute servers,
connected through a low-latency wireless LAN, can pro-
vide the CPU cycles, memory, and energy needed for
such applications.

Unfortunately, two annoying facts cloud this rosy fu-
ture. First, the optimal partitioning of an interactive
application into local and remote components is highly
application-specific and platform-specific. Since mo-
bile hardware evolves rapidly, this optimal partitioning
changes on the timescale of months rather than years.
Suboptimal partitioning can result in sluggish and intol-
erable interactive response. Hence, a tight and ongoing
coupling between application developers and hardware
platform developers appears inevitable. Second, matters
are made worse by the fact that mobile environments ex-
hibit highly variable resource availability. Bandwidth,
energy and presence of compute servers can change on
the timescale of minutes or hours, as a user moves to
different locations. Re-partitioning an application for
changed operating conditions at this timescale is there-

fore essential. These considerations suggest that an au-
tomated approach to partitioning applications for remote
execution is necessary. However, partitioning an appli-
cation without taking into consideration its unique char-
acteristics may result in sub-optimal partitions.

Can automated dynamic re-partitioning be reconciled
with the need to exploit application-specific knowledge?
In this paper, we show that this is indeed possible. Our
key insight is that the knowledge about an application
relevant to remote execution can be captured in compact
declarative form that is very small relative to code size.
More specifically, the full range of meaningful partitions
of an application can be described in a compact external
description called remote execution tactics or just tactics
for brevity. Thus, the tactics for an application consti-
tute the limited and controlled exposure of application-
specific knowledge necessary for making effective parti-
tioning and placement decisions for that application in a
mobile computing environment.

In this paper, we examine three applications of the
genre mentioned earlier (natural language translation,
speech recognition, and face recognition) and show that
the tactics for each is much less than one percent of total
code size. We present the design of Chroma, a tactics-
based remote execution system, and show that sound par-
titioning and placement of these applications using tac-
tics is possible. We show that Chroma is able to achieve
application performance that is comparable to execution
on an ideal runtime system.

In addition, we show that Chroma can opportunisti-
cally utilize extra resources in an over-provisioned envi-
ronment. This allows us to achieve lower latencies for
the three applications mentioned above.

The rest of this paper is organized as follows: Sec-
tion 2 presents the assumptions and goals of this work
while Section 3 presents the design of Chroma. We
present our experimental setup in Section 4. Sections 5
and 6 present Chroma’s performance relative to an ideal
runtime system. In Section 7, we show how tactics can
improve application performance in the presence of extra
resources. Section 8 presents related work and Section 9
concludes the paper.



2 Design Rationale

2.1 Assumptions

In this work, we assume that all code necessary for re-
mote execution is already present on all the clients and
servers. We do not perform any code migration and use
coarse-grained remote execution on the order of seconds.
This granularity is appropriate for the class of applica-
tions being targeted. This is in contrast to other remote
execution systems, like Java RMI [21], that perform fine-
grained remote execution on the order of microseconds.
We assume that the individual remote calls that make up
the remote execution are self-contained and do not pro-
duce side effects.

Since Chroma is meant to be used on mobile devices,
we assume a highly variable resource environment. Net-
work characteristics and remote infrastructure available
for hosting computation vary with location. File cache
state and CPU load on local and remote machines sig-
nificantly impact application performance. Application
energy consumption varies depending upon the specific
platform on which an application executes. Variation in
any resource can significantly change the best placement
of functionality. Thus, Chroma must continually monitor
resource availability and adapt to changes in the environ-
ment.

The class of applications that we are targeting are com-
putationally intensive interactive applications. Examples
include speech recognition, natural language translation
and augmented reality applications. These are the kinds
of applications that have been envisioned as being key
mobile applications in the near future [18, 23].

We assume that Chroma will not require applications
to be developed from scratch. Instead Chroma will use
existing applications that have been slightly modified to
work with Chroma. This is a realistic assumption be-
cause building new applications from scratch requires
huge amounts of effort. This is likely to be unprofitable
when application development time becomes compara-
ble to the useful lifetime of the wearable and/or handheld
hardware being targeted. In this paper, we do not address
the security and admission control issues involved in us-
ing remote servers.

2.2 Goals

Chroma was designed to achieve three major goals.
These are:� Seamless from user perspective: The user should be

oblivious to the decisions being made by Chroma
and the actual execution of those decisions.

� Effectiveness : Chroma should employ close to op-
timal strategies for remote execution under all re-
source conditions. An application developer should
not be tempted to hand tune.� Minimal burden on application writers: We want
Chroma to be an easy system for application writers
to use.

2.3 Solution Strategy

2.3.1 Seamless from user perspective

We achieved this goal by making Chroma completely
automatic from the perspective of the application user.
Chroma was designed to work with interactive applica-
tions which demand user attention due to their interactive
nature. As such, Chroma was designed to require min-
imal additional user attention. The user specifies high-
level preferences in advance to Chroma to guide its de-
cision making process. With these preferences, Chroma
will decide at runtime how and where to execute applica-
tions. The user is oblivious to these decisions in normal
use of the system.

2.3.2 Effectiveness

To achieve the best possible performance, Chroma
should use the optimal strategy for remote execution for
any particular resource condition. But how do we de-
termine what that optimal strategy is? In theory, it is
possible, for every resource condition, to test every sin-
gle way of splitting an application for remote execution
and then picking the best strategy. However, this is in-
tractable in practice. Another method is just to pick one
possible way of splitting up the application and using it
all the time. However, this static method will be ineffec-
tive when resources change. The key insight that allows
us to achieve our performance goal while keeping the
search space small is this:

For every application, the number of useful ways of
splitting the application for remote execution is small.

We call these useful ways of splitting the applica-
tion the tactics of the application. Tactics are specified
by the application developer and are high level descrip-
tions of meaningful module-level partitions of an appli-
cation. Our experience with modifying applications in
the course of this work suggests that it is easy for an ap-
plication developer to provide the tactics for an applica-
tion.

An application is made up of operations. An operation
is an application-specific notion of work. Tactics enu-
merate the various ways that an operation can be usefully
executed. For example, an operation for a speech recog-
nition application would be �����	��
���
���� �������	���	���	�
while an operation for a graphics application would be



���	������� . For each operation, the application developer
specifies one or more tactics. These different tactics
may differ in the amount of resources they use and their
fidelity [15]. Fidelity refers to an application specific
metric of quality. For example, speech recognition has
higher fidelity when using a large vocabulary rather than
a small vocabulary. Fidelity ranges from 0 to 1, with 1
being the best quality and 0 the worst.

2.3.3 Minimal Burden on Application Writers

Developing mobile computing applications is espe-
cially difficult because they have to be adaptive [6, 10].
The resource constraints of mobile devices, the uncer-
tainty of wireless communication quality, the concern
for battery life, and the lowered trust typical of mobile
environments all combine to complicate the design of
mobile applications. Only through dynamic adaptation
in response to varying runtime conditions can applica-
tions provide a satisfactory user experience. Unfortu-
nately, the complexity of writing and debugging adap-
tive code adds to the application software development
time. Hence, instead of building the mechanisms to de-
tect resource availability and trigger adaptation directly
into each application, we created a runtime system that
provides this functionality. However, the question still
remains: How do we easily modify existing applications
to use the adaptation features provided by our runtime?

Our approach to achieving this goal can be summa-
rized as follows: First, we provide a lightweight semi-
automatic process for customizing the API used by the
application. Such customization is targeted to the spe-
cific needs of the application. Second, we provide tools
for automatic generation of code stubs that map the cus-
tomized API to the generic API used by Chroma. Finally,
this generic API is supported by Chroma, which moni-
tors resource levels and triggers application adaptation.
Chroma support also helps ensure that the adaptations of
multiple concurrently executing applications do not in-
terfere with each other. Further details about the soft-
ware engineering aspects of Chroma can be found else-
where [2].

3 Chroma Design

In this section, we present the design of our tactics-
based remote execution system, Chroma, that satisfies
the goals described in Section 2. Building Chroma re-
quired two main components:

� A way of describing tactics.� A method for selecting a tactic at runtime.

3.1 Describing Tactics

Figure 1 shows the tactics for Pangloss-Lite, a natural
language translator. Pangloss-Lite uses up to three trans-
lation engines (dictionary, ebmt and glossary) to trans-
late a sentence. The tactics specify the different ways of
combining these engines and are composed of two dis-
tinct portions. Using more than one engine results in a
better translation but at the cost of using more resources.

The first portion of the description (denoted by the
keyword RPC) details the remote calls that can be used
for this application. The second portion (denoted by
the keyword DEFINE TACTIC) defines the specific se-
quence of remote calls that make up a particular tac-
tic. An ”&” separator between remote calls denotes that
the remote calls must be performed in sequential order
while remote calls within brackets ( ( �	��������� 
�������� ,�	��������� ���	��� ) ) tell the remote execution system that
those calls can be executed in parallel.

Each tactic fully describes one way of combining
RPCs to complete an operation. The data dependencies
between RPCs are visible because the prototypes of the
remote calls are specified in the tactics description. Each
of the individual remote calls that make up a particular
tactic can be run either locally or on any remote server.
This decision is made at runtime. Even though the tactics
may differ in their resource usage and fidelity, each tac-
tic is guaranteed to produce a proper result for the given
operation if the remote calls are performed in the order
specified by the tactic (we assume no side effects as men-
tioned in Section 2.1). Since the data dependencies and
ordering between remote calls is fully specified by the
tactic description, Chroma is able to parallelize the ex-
ecution of these remote stages whenever possible. This
aspect of Chroma is explained further in Section 3.3.

A key point to note is that the description of the ap-
plication’s tactics is very small compared to the size of
the application. As shown in Figure 1, it requires about
14 lines to specify the tactics for Pangloss-Lite. This
is in comparison to the roughly 150K lines of code in
Pangloss-Lite.

3.2 Tactic Selection

In this section we highlight the system components
necessary for Chroma to decide at runtime which tactic
to use and where to execute it. For example, if Chroma
picks the tactic 
�������� �	�	��� (Figure 1) for Pangloss-
Lite, it will also have to decide whether to execute the�	��������� 
�������� , �	��������� �	����� and �	�������	� � � remote
calls of this tactic locally or remotely. Chroma’s goal is
thus to decide on a tactic plan. A tactic plan is comprised
of a tactic number (denoting which tactic to use) along
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Pangloss-Lite has seven tactics that are listed after the DEFINE TACTIC keyword. These seven tactics give different ways of
combining the remote calls (listed after the keyword RPC) for this application. Each of these calls can be executed locally or at a
remote server and this is determined at runtime by Chroma

Figure 1: Tactics for Pangloss-Lite

with a list that specifies the server to use for each RPC
in that tactic. Using the local machine avoids network
transmission and is unavoidable if the client is discon-
nected. In contrast, using a remote machine incurs the
delay and energy cost of network communication but ex-
ploits the CPU and energy resources of a remote server.
Chroma enumerates through all possible tactic plans and
picks the best one for the given resource availability.

To be able to do this, first, Chroma needs to be able to
predict the resource usage of each tactic plan. Second,
Chroma has to measure the current resource availability.
Third, Chroma requires guidance from the user about the
relative importance of each resource. Given these three
things, Chroma will be able to decide on the best tactic.

3.2.1 Resource Prediction

For a given operation and tactic plan, Chroma needs
to be able to predict the resources the tactic plan will re-
quire. This information is provided by resource demand
predictors that use history based prediction [14]. The
key idea here is that the resource usage of a tactic plan
can be predicted from its recent resource usage. The de-
mand prediction mechanisms are initialized by off-line
logging. At runtime, these predictors are updated using
online monitoring and machine learning to improve ac-
curacy.

3.2.2 Resource Monitoring

Chroma uses multiple resource measurers to deter-
mine current resource availability. These resource mea-
surers currently measure memory usage, CPU availabil-
ity, available bandwidth, latency of operation, file cache
state and battery energy remaining. Chroma also has
mechanisms to retrieve resource availability information

from remote servers.

3.2.3 User Guidance

To effectively match resource demand to resource
availability, Chroma needs to trade off resources for fi-
delity. How to perform this tradeoff is frequently context
sensitive and thus dynamic. For instance, would the user
of a language translator prefer accurate translations or
snappy response times? Should an application running
on a mobile device use power-saving modes to preserve
battery charge, or should it use resources liberally in or-
der to complete the user’s task before he or she runs off
to board their plane? That knowledge is very hard to ob-
tain at the application level as it is user-specific and not
application-specific.

We provide Chroma with these user-specific resource
tradeoffs in the form of utility functions. A utility func-
tion is a user-specific function that quantifies the tradeoff
between two or more attributes.

In this paper, we use a fixed utility function that states
that latency is as important as fidelity and that Chroma
should ignore battery lifetimes. Chroma will thus choose
the tactic plan that maximizes the latency-fidelity metric
(expressed mathematically as maximizing the quantity
f idelity
latency ). In our future work, we plan to develop meth-
ods that will allow us to capture different utility functions
from the user using a graphical user interface. These dif-
ferent utility functions will allow us to optimize the tactic
selection for other user specified metrics like conserving
battery power or minimizing network bandwidth.

3.2.4 Selection Process

Figure 2 shows how all the components work together.
Chroma determines expected resource demand for each



Figure 2: Choosing a Tactic

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1 2 3 5 10 15 20 50
Number of Tactics

T
im

e 
N

ee
de

d 
fo

r 
So

lv
er

 (m
s) 20 servers

10 servers
1 server

This figure shows the overhead incurred (in milliseconds) by
the solver in deciding which tactic to choose. The overhead
shown is only for the computational aspect of the solver and
does not include the time needed by other parts of Chroma such
as the resource estimators and resource demand predictors. To
obtain these results, we extracted the core solver from Chroma
and supplied it with synthetic inputs. This allowed us to measure
just the overhead of the solver. The total measured overhead of
Chroma is shown in Section 6.

Figure 3: Overhead of Choosing a Tactic

tactic of the current operation by querying the resource
prediction component. At the same time, Chroma de-
termines the available resources via the resource moni-
toring component. These resource monitors also query
any available remote servers to determine the resource
availability on those servers. This information is neces-
sary as the latency of the tactic is determined by where
each individual remote call in that tactic is being exe-
cuted. Determining resource availability on demand can
be a very time consuming operation. Hence, to improve
performance at the cost of accuracy, the resource moni-
tors perform these queries periodically in the background
and cache the results.

Chroma iterates through every possible tactic plan and
picks the best tactic plan to use for this operation. It does
this by picking the tactic plan that maximizes the latency-

fidelity utility function metric. The tactic plan is then
executed and its resource usage is logged to refine fu-
ture demand prediction. This brute force method works
well for a small number of tactics as shown in Figure 3.
From the results in Section 6, we see that the contribu-
tion of the solver to the total Chroma overhead is min-
imal. We claim that, in practice, the number of useful
tactics for computationally intensive interactive applica-
tions is small enough to allow this brute force tactic se-
lection mechanism. We are currently verifying this claim
and also looking at using other solvers that are both less
computationally demanding and provably correct [11].

3.3 Over-Provisioned Environments

Our discussion so far has focused on environments
that are resource constrained. However, environments
such as smart rooms, may be over-provisioned. Over-
provisioned environments are characterized as having
more computing resources than are actually needed for
normal operation. We would like to have a system that
works well if resources are scarce but is able to immedi-
ately make use of over-provisioning if it becomes avail-
able. Our goal is to exploit idle resources to improve user
experience.

Tactics help by providing the knowledge of the re-
motes calls needed by a given operation and the data de-
pendencies between them. Chroma can use the knowl-
edge in tactics opportunistically to improve user experi-
ence in three different ways.

First, Chroma can make multiple remote execution
calls (for the same operation) to remote servers and use
the fastest result. For example, Chroma can execute the
glossary engine of Pangloss-Lite at multiple servers and
use the fastest result. Chroma knows that it can do this
safely because the description of the tactics makes it clear
that executing the glossary engine is a stand-alone oper-
ation and does not require any previous results or state.
We call this optimization method “fastest result”.

Second, Chroma can split the work necessary for an
operation among multiple servers. It does this by de-
composing operation data into smaller chunks and ship-
ping each chunk to a different remote server. Chroma
uses hints from the application to determine the proper
method of splitting operation data into smaller chunks.
We call this optimization “data decomposition”.

Third, Chroma can perform the same operation but
with different fidelities at different servers. Chroma
can then return the highest fidelity result that satisfies
the latency constraints of the application. For example,
Chroma can execute multiple instances of the �	�	��� en-
gine of Pangloss-Lite in parallel at separate servers (all
with different fidelities) and use the highest fidelity re-



sult that has returned before a specified amount of time.
We call this optimization method “best fidelity”.

Tactics allow us to use these optimizations on behalf of
applications automatically without the applications need-
ing to be re-compiled or modified in any way. There are
other optimizations possible with tactics, but these are
the ones we have explored so far and we present perfor-
mance results for them in Section 7.

4 Validation Approach

4.1 Applications

To validate the design of Chroma, we have used three
applications that are representative of the needs of a fu-
ture mobile user. These applications are all computa-
tionally intensive interactive applications that are cur-
rently being actively developed for mobile environments.
These applications are� Pangloss-Lite [7] : A natural language translator

written in C++ for translating sentences in one lan-
guage to another. This kind of application is impor-
tant for the modern mobile user who is moving from
country to country.� Janus [22] : A speech to text conversion program
written in C that can be used to convert voice input
into text. This kind of application is at the core of
any voice recognition system that is used to control
mobile devices.� Face [20] : A program written in Ada that detects
faces in images and is representative of image pro-
cessing applications. Surveillance personnel, with
wearable computers, that use images to detect sus-
picious features in the environment are likely to re-
quire this kind of application.

4.2 Experimental Platform

We used HP Omnibook 6000 notebooks with 256 MB
of memory, a 20 GB hard disk and a 1 GHz Mobile Pen-
tium 3 processor as our remote servers.

We used two different clients that represent the range
of computational power available in today’s mobile de-
vices. The fast client is the above mentioned HP Om-
nibook 6000 notebook. The slow client is an IBM
Thinkpad 560X notebook with 96 MB of memory and
a 233 MHz Mobile Pentium MMX CPU. The computa-
tional power of the Thinkpad 560X is representative of
today’s most powerful handheld devices.

The clients and servers ran Linux and were connected
via a 100 Mb/s Ethernet network. A deployed version of
Chroma would use a wireless LAN such as 802.11a (55
Mb/s). We used the Coda [19] distributed file system to

share application code between the clients and servers.

4.3 Success Criteria

To successfully validate Chroma, we need to show the
following things:

� Chroma is able to correctly pick the best tactic plan
for a particular application and resource availability.
We demonstrate this by showing that Chroma picks
the tactic plan that maximizes (or comes close to
maximizing) the latency-fidelity metric.� The overhead of Chroma’s decision making process
is not too large and does not add substantially to the
total latency of the application.� Chroma is able to use tactics to automatically im-
prove application performance in the presence of
additional server resources.

The validation of these three parts will justify our
claim that tactics are a valuable. Sections 5, 6 and 7
present our results relative to the above points.

5 Results: Tactic Selection

Since Chroma automatically determines how to re-
motely execute an application based on the current re-
sources, it is possible that the decisions it makes are
not as good as a careful manual remote partitioning of
the application. We allay this concern by showing that
Chroma’s partitioning comes close to the optimal parti-
tioning possible for a number of different applications
and operating conditions.

To demonstrate this, we compare the decision making
of Chroma with that of an ideal runtime system. This
ideal runtime system is achieved by manually testing ev-
ery possible tactic plan for a given experiment and then
choosing the best one. Chroma, on the other hand, has
to figure out the best tactic plan dynamically at runtime.
We define the best tactic plan as being the one that max-
imizes the latency-fidelity metric. We show that Chroma
chooses a tactic plan that either maximizes the latency-
fidelity metric or comes very close to it.

Each experiment was repeated five times and our re-
sults are shown with 90% confidence intervals where ap-
plicable. Since Chroma uses history-based demand pre-
diction, we created history logs for each application be-
fore running the experiments using training data that was
not used in the actual experiments. These logs provide
the system with the proper prediction values for the ap-
plication. Without these logs, the system would have to
slowly learn the correct prediction values online and this
could take a long time.



Sentence Length Ideal Runtime Chroma Ratio
(No. of Words) chosen tactic metric chosen tactic metric

11 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
23 gloss dict ebmt 1.00 dict ebmt 0.70 0.70
35 gloss dict ebmt 1.00 dict ebmt 0.70 0.70
47 gloss dict ebmt 0.70 dict ebmt 0.70 1.00
59 dict ebmt 0.70 dict ebmt 0.70 1.00

(a) Fast Client

Sentence Length Ideal Runtime Chroma Ratio
(No. of Words) chosen tactic metric chosen tactic metric

11 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
23 gloss dict ebmt 1.00 gloss dict ebmt 1.00 1.00
35 gloss dict ebmt 1.00 dict ebmt 0.70 0.70
47 dict ebmt 0.70 dict ebmt 0.70 1.00
59 dict ebmt 0.70 dict ebmt 0.70 1.00

(b) Slow Client

This table shows the tactic plan chosen by Chroma and the ideal runtime. The locations chosen by Chroma and the ideal runtime
were identical in all cases and are thus omitted from the table. We also show the value of the latency-fidelity metric for the tactic
plans chosen by the two systems. The ratio ( Chroma

Ideal ) between the ideal system’s metric and Chroma’s is shown in the Ratio column.

Figure 4: Comparison Between the Ideal Runtime and Chroma for Pangloss-Lite

5.1 Pangloss-Lite

5.1.1 Description

As mentioned in Section 3.1, Pangloss-Lite translates
text from one language to another. It can use up to
three translation engines: EBMT (example-based ma-
chine translation), glossary-based, and dictionary-based.
Each engine returns a set of potential translations for
phrases within the input text. A language modeler com-
bines their output to generate the final translation.

Pangloss-Lite’s fidelity increases with the number of
engines used for translation. We assign the EBMT en-
gine a fidelity of 0.5. The glossary and dictionary en-
gines produce subjectively worse translations—we as-
sign them fidelity levels of 0.3 and 0.2, respectively.
When multiple engines are used, we add their individual
fidelities since the language modeler can combine their
outputs to produce a better translation. For example,
when the EBMT and glossary-based engines are used,
we assign a fidelity of 0.8. The seven possible combi-
nations of the engines are captured by the seven tactics
(shown in Fig 1).

We use the latency-fidelity utility function to deter-
mine the tactic to use for Pangloss-Lite. However, to
model the preferences of an interactive user, we specify
that all latencies of one second or lower are equally good
and that all latencies larger than five seconds are impos-
sibly bad. Thus if the latency is greater than five seconds,
we set the latency to a really large number (thus making

the utility value really small) and if the latency is one sec-
ond or lower, we set the latency value to one. All other
latency values are left unchanged.

All three engines and the language modeler may be ex-
ecuted remotely. While execution of each engine is op-
tional, the language modeler must always execute. Thus,
there are at least 52 tactic plans from which Chroma may
choose when at least one remote server is available.

We used as input five sentences with different number
of words (ranging from 11 words to 59 words) as inputs
for the baseline experiments. The input sentences were
in Spanish and were translated into English. There were
three remote servers available and both the servers and
the clients were unloaded for the purposes of this exper-
iment.

5.1.2 Results

Figures 4 displays the decisions made by Chroma
compared with the decisions made by the ideal runtime
for each sentence on the fast and slow clients respec-
tively. From the results, we see that Chroma made deci-
sions that approximated the decisions made by the ideal
runtime system. In the cases where Chroma made a dif-
ferent decision, it was off by 30%. This difference in de-
cision making was due to incorrect resource estimations
by Chroma. From the results, we see that Chroma de-
cided not to run the 
�������������^ engine in the cases where
it differed from the ideal runtime. The time needed for
the glossary engine to complete a translation was hard



Utterance Ideal Runtime Chroma Ratio
chosen metric chosen metric
tactic tactic

1 reduced 0.50 reduced 0.50 1.00
2 reduced 0.50 reduced 0.50 1.00
3 reduced 0.50 reduced 0.50 1.00
4 reduced 0.50 reduced 0.50 1.00
5 reduced 0.50 reduced 0.50 1.00
6 reduced 0.50 reduced 0.50 1.00
7 full 0.53 reduced 0.50 0.94
8 reduced 0.50 reduced 0.50 1.00
9 reduced 0.50 reduced 0.50 1.00

10 reduced 0.50 reduced 0.50 1.00

Utterance Ideal Runtime Chroma Ratio
chosen metric chosen metric
tactic tactic

1 reduced 0.50 reduced 0.50 1.00
2 reduced 0.50 reduced 0.48 0.96
3 reduced 0.50 reduced 0.50 1.00
4 reduced 0.50 reduced 0.50 1.00
5 reduced 0.50 reduced 0.49 0.98
6 reduced 0.50 reduced 0.50 1.00
7 reduced 0.50 reduced 0.50 1.00
8 reduced 0.42 reduced 0.41 0.98
9 reduced 0.50 reduced 0.50 1.00

10 reduced 0.50 reduced 0.48 0.96
(a) Fast client (b) Slow Client

This table shows the tactic plan chosen by Chroma and the ideal runtime. The locations chosen by Chroma and the ideal runtime
were identical in all cases and are thus omitted from the table. We also show the value of the latency-fidelity metric for the tactic
plans chosen by the two systems. The ratio ( Chroma

Ideal ) between the ideal system’s metric and Chroma’s is shown in the Ratio column.

Figure 5: Comparison Between the Ideal Runtime and Chroma for Janus
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The tactics declaration for Janus contains two remote calls
(do full recognition and do reduced recognition) that can be
run either locally or remotely.

Figure 6: Tactics for Janus

for Chroma to predict as it was not a simple function of
the length of the input sentence. Chroma’s decision to
drop the 
��������	����^ engine incurred a 30% reduction in
fidelity and this resulted in the final 30% difference in
Ratio. The latencies used to calculate the metric were
below 1 second for both Chroma and the ideal runtime
system in all the cases where the metrics differed.

5.2 Janus

5.2.1 Description

Janus performs speech-to-text translation of spoken
phrases. Recognition can be performed at either full
or reduced fidelity. The reduced fidelity uses a smaller,
more task-specific vocabulary that limits the number of
phrases that can be successfully recognized but requires
less time to recognize a phrase. We assign the reduced fi-
delity a utility of 0.5 and the full fidelity a utility of 1.0 to

reflect this behavior. Similar to Pangloss-Lite, we model
an interactive user by making all latencies less than or
equal to one second equally good (we set the latency
value to one) and all latencies greater than five seconds
horribly bad (we set the latency to a really large number).
All other latency values are left unchanged.

Janus has two remote calls that can be executed either
locally or remotely. These two possible ways of execut-
ing Janus are captured by Janus’s tactics, as shown in
Figure 6. The tactic d������ �����	�	
���
#��
��	� uses the full fi-
delity vocabulary to do the recognition while the tactic�����	���	��� �����	�	
���
#��
��	� uses the reduced fidelity vocab-
ulary to do the recognition. Describing Janus’s tactics
requires 4 lines of code in our declarative language. This
is significantly smaller than Janus itself which is e 120K
lines of C code.

We used as input ten different utterances contain-
ing different numbers of spoken words (ranging from
3 words to 10 words) as inputs for the baseline experi-
ments. One remote server was used for this experiment
and both the server and the clients were unloaded.

5.2.2 Results

Figure 5 shows the decisions made by the ideal run-
time and Chroma. We see that Chroma picked the op-
timal choice in almost all cases on the fast client. Even
in the case where Chroma picked a different tactic plan,
the latency-fidelity metric of the plan picked by Chroma
was very close to optimal (94% of optimal). On the slow
client, Chroma performed as well as the ideal runtime.
In all cases, Chroma picked the same tactic plan as the
ideal runtime system and the differences in the metric
were due to experimental errors in the latency measure-
ments.
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The latency that was achieved by executing Face remotely and locally for all inputs on both clients is shown. In all cases, Chroma
picked the option that minimized latency. This maximized the latency-fidelity metric as the fidelity was constant in all cases.

Figure 7: Relative Latency for Face
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Face has only one remote call (detect face) that can be run either
locally or remotely. This is captured by its single tactic.

Figure 8: Tactics for Face

5.3 Face

5.3.1 Description

Face is a program that detects human faces in images.
It is representative of image processing applications of
value to mobile users. Face can potentially change its fi-
delity by degrading the quality of the input image. How-
ever, for the purposes of this experiment, all experiments
were run with full fidelity images.

Face can be run either entirely locally or entirely re-
motely. In both cases, it runs the exact same remote pro-
cedure and it has no other modes of operation. It thus
has only one tactic and this is shown in Figure 8. Even
though Face has only one tactic, this does not mean that it
cannot benefit from tactics. We show in Section 7.2 how
Chroma can use this single tactic to improve the perfor-
mance of Face by using extra resources in the environ-
ment. Face is written in Ada and has e 20K lines of code
while the description of its tactics requires just 2 lines.

We used as input three different image files of differ-
ent size (ranging from 133 KB to 621 KB in size) as in-
puts for the baseline experiments. There was one remote
server available and both the server and the clients were
unloaded.

5.3.2 Results

Figure 7 shows the latency that can be achieved when
doing the face recognition locally and remotely for both
configurations. Since the fidelity was constant (full
quality images) in all the experiments, maximizing the
latency-fidelity metric would require Chroma to pick
the option that minimized the latency. We see that in
all cases, Chroma chose the option that maximized the
latency-fidelity metric by picking the tactic plan that
minimized the latency.

The graphs show that Face has extremely high laten-
cies; on the order of tens of seconds per image. We will
show how tactics allow us to reduce this latency without
sacrificing fidelity in Section 7.2.

5.4 Summary

Sections 5.1, 5.2 and 5.3 described the performance of
Chroma relative to an ideal runtime system for Pangloss-
Lite, Janus and Face respectively. We see that while
Chroma is not perfect, its performance is still compa-
rable to an ideal runtime system. We believe that the
results indicate that it is viable to build a tactics-based
remote execution system that provides good application
performance.

6 Results: Chroma’s Overhead
In this section, we present the CPU overhead of

Chroma’s decision making using Pangloss-Lite as the ex-
ample application. Pangloss-Lite has the largest number
of tactic plans among all the applications used in this pa-
per and required Chroma to do the most decision mak-
ing. As such, we do not present the overhead results for
the other applications as they were strictly less than the
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The bars show the time needed for different tactic plans to execute with and without Chroma’s decision making process. The
difference in time represents the overhead of Chroma’s decision making process. The tactic plans used in this experiment are the
same ones Chroma chose in Figure 4 for the different inputs. The results are the average of 5 runs and are shown with 90% confidence
intervals.

Figure 9: Overhead of Decision Making for Pangloss-Lite

overhead incurred for Pangloss-Lite.

Figure 9 shows the overhead of Chroma’s decision
making. This overhead represents the time that Chroma
needs to determine the tactic plan to use. Chroma cur-
rently does not take its own overhead into account when
making placement decisions and thus can achieve longer
latencies than it expected. This is more apparent on
slower clients as it takes longer for Chroma to make its
decisions on these computationally weaker clients. From
the figure, we see that Chroma’s maximum overhead was
less than 0.5 seconds. This overhead, while somewhat
high, was still acceptable for the class of applications be-
ing targeted. We are currently improving the internal al-
gorithms used in Chroma to reduce this overhead.

7 Results: Over Provisioning
In this section, we show the performance improve-

ments that Chroma achieves by opportunistically using
extra resources in the environment. These extra re-
sources take the form of extra available servers that can
be used for remotely executing application components.
We used the slow client for these experiments.

To show the benefits of this approach, we introduced
an artificial load on the server that Chroma selected to
remotely execute application components. This artificial
load has an average load of 0.2 (i.e., on average, each
CPU was utilized only 20% of the time). However, the
actual load pattern itself is random. We chose a random
load pattern to model the uncertainty inherent in mobile
environments where remote servers could suddenly per-
form worse than expected due to a variety of random rea-
sons (such as bandwidth fluctuations, extra load at the
server etc.). The average load was set at 0.2 to ensure

that the servers were, on average, underutilized. In con-
trast, a load of 0.8 (the CPU was utilized 80% of the time)
or higher would indicate a heavy load.

The overall scenario we are assuming for this section
is as follows; Chroma has decided where to remotely ex-
ecute an application component. At the time it made the
decision, Chroma noticed that the remote server was ca-
pable of satisfying the latency requirements of the op-
eration. However, when the operation was actually ex-
ecuted, the actual average latency was much higher due
to the random load on the server that Chroma was un-
aware of. We show results to quantify just how bad the
average latency (and variance) becomes and how oppor-
tunistically using extra servers in the environment can
help improve this. These extra servers can be used in the
three ways detailed in Section 3.3 to allow us to:

� Hedge against load spikes at the remote servers: the
same operation can be run on multiple servers using
the “fastest result” method.� Improve the total latency of an operation without
sacrificing fidelity: the operation can be broken up
into smaller parts using the “data decomposition”
method and each smaller part run on a separate
server.� Satisfy absolute latency constraints of an applica-
tion while providing the best possible fidelity: the
operation can be run at different servers (where each
server runs the operation at a different fidelity) us-
ing the “best fidelity” method and the best fidelity
result that returns within the latency constraint is re-
turned to the application.

It should be noted again that all these methods can be
used automatically at runtime by Chroma without the ap-
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This figure shows the use of multiple loaded servers to improve
the performance of Pangloss-Lite and Janus. As we increase the
number of loaded servers, the latency and standard deviation for
both applications decrease significantly and converge towards
the best-case value (1 unloaded server).

Figure 10: Using Extra Loaded Servers to Improve La-
tency

plication being aware of them. This is one of the key ben-
efits of using a tactics-based remote execution system.

7.1 Hedging Against Load Spikes

7.1.1 Description

This experiment shows how opportunistically using
extra servers in the environments provides protection
against random load spikes at any particular remote
server. In this experiment, Chroma decides to execute the
glossary engine of Pangloss-Lite remotely to translate a
sentence containing 35 words. We ran the translation of
this sentence 100 times using a different number of re-
mote servers in parallel and noted the average latency
achieved and the standard deviation.

7.1.2 Results

Figure 10 shows the results we obtained from execut-
ing the glossary engine remotely on a totally unloaded
server and from executing the glossary engine remotely
on one, two and three servers respectively that had the
artificial load explained earlier. Figure 10 also shows the
results for Janus where the recognition of utterance 5 is
performed multiple times on remote servers.

The results for the totally unloaded server present the
best possible average latency and standard deviation.
What we notice is that when the remote server is loaded,
executing the glossary engine or recognition remotely
at the server results in a much higher average latency
and standard deviation. We also notice that executing
the glossary engine or recognition on two remote servers

that are randomly loaded (with the same average load)
reduces the latency and standard deviation significantly
compared with the single loaded server case. Execut-
ing the glossary engine or recognition on more loaded
remote servers reduces the average latency and standard
deviation even further and brings them closer to the best
possible results.

The reduction in latency caused by using extra servers
with load was due to the load on the servers being un-
correlated. Hence, even though the average load on the
servers was the same, when one server was experiencing
a load spike, another server was unloaded and was able
to service the request faster. Our method of using extra
servers thus maximizes the probability of being able to
execute the application component at an unloaded server.

This assumption of uncorrelated load is reasonable in
a mobile environment for the following reasons: if the
remote servers are located in different parts of the net-
work, it is quite likely that they experience different load
patterns. This is also true for remote servers that are co-
located but owned by different entities. In the case where
the remote servers are co-located and owed by the same
entity, it is possible that they experience the same load
patterns. However, in this case, enabling some sort of
Ethernet-like backoff system on the remote servers will
ensure that the load on each server is uncorrelated.

Of course, if every Chroma client is sending extra re-
quests to every available server, the assumption that the
load on each server is uncorrelated will not be true. We
are currently studying various resource management al-
gorithms to ensure fair usage of extra servers. We are
also looking at mechanisms to allow the user to explic-
itly specify (if necessary) which extra servers can be used
and which should not.

7.2 Reducing Latency by Decomposition

7.2.1 Description

This experiment shows how decomposing an opera-
tion into smaller pieces and executing each piece on a
separate remote server reduces the overall latency of the
operation. As shown in Figure 7, Face had high latencies
for the three input files. However, this latency can be
reduced in two ways. Firstly, the input image can be re-
duced in size by scaling it. However, this method reduces
the fidelity of the result. The second method is to break
the image into smaller pieces and separately process each
piece. This method has the potential of improving the la-
tency without reducing the fidelity.

Here, we assume that the application has previously
provided Chroma with the methods for splitting and re-
combining the image files. Given these methods, at run-



No. of Average (s) Standard Latency
Servers Used Deviation (s) Reduction

1 24.54 0.05 —
2 13.59 0.05 44.6%
3 9.73 0.07 60.4%

We see that splitting the input image for the operation into
smaller pieces and sending these smaller pieces to different re-
mote servers results in a dramatic reduction in total latency. The
number of servers used corresponds to the number of pieces the
image file was split into.

Figure 11: Improvement in Face Latency by Decompo-
sition

time, Chroma is able to automatically split the input
images to improve application performance when extra
servers become available.

7.2.2 Results

Figure 11 shows the results obtained by using this
method. We ran each experiment 5 times and measured
the average latency and standard deviation. The servers
used were unloaded. The results show that splitting the
image into smaller pieces (allowing Chroma to paral-
lelize the operation) results in a substantial latency im-
provement (up to 60% reduction) over the original la-
tency.

7.3 Meeting Latency Constraints

7.3.1 Description

Chroma allows an application to specify a latency con-
straint for a given operation. This is frequently required
for interactive applications to meet user requirements.
Chroma looks at the tactics for the application and auto-
matically decides how to remotely execute this operation
in parallel with different fidelity values for each paral-
lel execution. For example, for Pangloss-Lite, Chroma
could chose to execute the dictionary, gloss and ebmt
translation engines on separate servers. When the la-
tency constraint expires, Chroma picks the completed re-
sult with the highest fidelity and returns that to the appli-
cation.

7.3.2 Results

We present results for Pangloss-Lite to show experi-
mentally the benefits of this approach. For this experi-
ment, we assume that the application has specified a la-
tency constraint of 1 second. There were three remote
servers available for Chroma to use. We use a sentence
of 35 words as input. We load all the servers with a ran-
dom load of average value 0.2. We ran each experiment
5 times.

Figure 12 shows the results for this experiment. We
see that by taking the best result after 1 second and

returning that to the application, Chroma is able to
achieve a higher latency-fidelity metric than by wait-
ing for all the engines to finish and returning a full fi-
delity result. During this experiment, Chroma did the
following: It performed the translation using a differ-
ent translation engine ( ���	���kj[
��������]j[�i
��#� ) on each
of the three servers. When the latency constraint ex-
pired, Chroma determined which engines had success-
fully finished translating. Chroma then consulted the
tactics description to determine how best to combine the
completed results to provide the highest fidelity output.
All of these steps can be done automatically by Chroma
without application knowledge.

7.4 Summary

We have presented three different ways in which
Chroma can use tactics to automatically improve user
experience in over-provisioned environments. The im-
provement in each case was significant. Tactics allow us
to obtain these improvements automatically at runtime
without the application being aware of Chroma’s deci-
sions. The “data decomposition” method (Section 7.2),
was the only method that required prior input from the
application before it could be used. In this case, the ap-
plication needed to tell Chroma how its data could be
split into smaller pieces and recombined later. But even
here, once Chroma had this information, it was able to
use extra available resources to improve application per-
formance at runtime without the application being aware
of Chroma’s optimizations.

8 Related Work
There have been a number of application-aware re-

mote execution systems such as Abacus [1], Coign [3]
and Condor [8]. They perform well in environments
where resource availability does not change between the
time the system decides how to remotely execute an ap-
plication and when it actually performs the remote exe-
cution.

However, this assumption comes under fire in mobile
environments. These environments are characterized by
highly variable resource conditions that change on the
order of seconds [5, 6, 17]. Overcoming this uncertainty
requires application-specific knowledge on how to re-
motely partition the application.

An extra benefit of acquiring this knowledge is that
it allows us to utilize additional resources in over-
provisioned environments such as smart spaces with
many idle compute servers. We envision that these en-
vironments will become increasingly common in the
new future. Our system is designed to opportunistically



Fidelity Latency Metric
Average (s) Standard Deviation (s)

Running to Completion 1.0 1.96 0.15 0.51
Taking Best Result after 1s 0.75 1.00 0.01 0.77

The table shows the latencies and fidelities obtained by running all three translation engines (dict, gloss, ebmt) on the input on loaded
servers. We see that taking the best result that returns before 1 second results in a higher latency-fidelity metric than using the highest
fidelity result.

Figure 12: Achieving Latency Constraints for Pangloss-Lite

use these extra resources to improve application perfor-
mance. We know of no other system that does this.

There have been other systems that have looked at the
problem of partitioning applications. These include sys-
tems that performed object migration like Emerald [9]
and systems that performed process migration [13].
Other systems [16] looked at the problem of service com-
position or the building of useful applications from com-
ponents available in the environment. Currently, we have
concentrated on the problem of identifying useful remote
execution partitions of existing applications and have not
performed any form of code migration or service compo-
sition.

The declarative language we use to express an appli-
cation’s tactics addresses some of the same issues as
4GLs [12] and ‘little “languages” [4]. The latter are
task-specific languages that allow developers to express
higher level semantics without worrying about low level
details. Our language is similar as it allows application
developers to specify the remote execution capabilities
of their applications at a higher level without needing to
worry about low level system integration details. How-
ever, our approach is focused towards remote execution
systems for mobile computing.

9 Conclusion

In this paper, we introduced the concept of tactics.
This abstraction captures application-specific knowledge
relevant to remote execution with minimal exposure of
the implementation details. This allows the use of
computationally intensive applications on handheld and
wearable devices even in environments with changing re-
sources. We showed how tactics can be used to build a
remote execution system. We also provided experimen-
tal results from three applications to confirm the benefits
of using tactics.

Currently, we are looking at methods of resource allo-
cation to ensure that servers are used fairly by Chroma
clients. We are also looking at various service discovery
mechanisms to allow us to easily discover the presence of
these servers. Finally, we are developing better software
engineering methods to ease application development.
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