
Cloud-based Query Evaluation for Energy-Efficient
Mobile Sensing

Tianli Mo∗, Sougata Sen†, Lipyeow Lim∗, Archan Misra†, Rajesh Krishna Balan † and Youngki Lee†

∗University of Hawai‘i at Mānoa and †Singapore Management University

Abstract—In this paper, we reduce the energy overheads of
continuous mobile sensing for context-aware applications that
are interested in collective context or events. We propose a cloud-
based query management and optimization framework, called
CloQue, which can support concurrent queries, executing over
thousands of individual smartphones. CloQue exploits correlation
across context of different users to reduce energy overheads
via two key innovations: i) dynamically reordering the order
of predicate processing to preferentially select predicates with
not just lower sensing cost and higher selectivity, but that
maximally reduce the uncertainty about other context predicates;
and ii) intelligently propagating the query evaluation results to
dynamically update the uncertainty of other correlated, but yet-
to-be evaluated, context predicates. An evaluation, using real
cellphone traces from a real world dataset shows significant
energy savings (between 30 to 50% compared with traditional
short-circuit systems) with little loss in accuracy (5% at most).

I. INTRODUCTION

This work proposes a system for efficiently executing
multi-person, continuous queries, expressed over context de-
rived from smartphone-embedded sensors of a large group of
individuals. In many context-aware computing scenarios, users
are interested in context or events that are not just derived
from a single individual, but are instead based on the collective
context of a group. For example, a university student may wish
to be notified when the rest of her project mates have reached
a meeting room. Evaluation of such continuous, multi-person
queries often imposes high energy overheads.

It is possible to reduce energy overheads in such evalua-
tions by designing a technique which considers: i) Correlation
Across Users: Users often perform activities in coordinated or
correlated fashion and ii) Sensor Diversity: Different context
attributes constituting a collective query require data from
different sensors, with correspondingly different sensing (data
acquisition) costs. Evaluating “cheaper” sensors first can re-
duce the overall energy cost.

Both of the above strategies for query optimization have
been investigated previously (e.g., context correlation in [9]
and short-circuiting of queries in [4], [7]), but almost exclu-
sively for retrieving context of an individual user in isolation.
Our intention is to utilize the principles of query short-
circuiting and context correlation to make evaluation of con-
text more energy-efficient, but for collective context queries,

This work is supported in part by the Singapore Ministry of Education
Academic Research Fund Tier 2 under the research grant MOE2011-T2-1-
001. Any opinions, findings, conclusions or recommendations expressed in
this material are those of the authors and do not necessarily reflect the views
of the granting agency or Singapore Management University.

Smartphone Access Layer

Smartphone
Resource

Monitoring

Query
Registry

Query
Evaluation

Engine

Rule
Mining
Engine

...

Fig. 1. The Overall Functional Architecture of CloQue .

at scale–e.g., over hundreds or thousands of individuals in
environments such as office buildings or college campuses.
Such a setting gives rise to several unique challenges such
as: (i) Varying levels of Cross-User Correlation: Correlation
across individuals is relatively complicated than correlation
across context involving an individual. Also the correlation
keeps varying across different groups of individuals. (ii) Shared
Context of Interest across Queries: Multiple concurrent queries
are likely to require the same context from the same individual.
(iii) Variable Processing Latencies: Applications may need to
be notified of collectively derived context within a specified
time limit.

To support such large scale energy-efficient evaluation
of multi-person, continuous queries, we propose CloQue1, a
cloud-based framework. Applications submit their continuous
collective-context based queries to the CloQue cloud engine,
which then retrieves the required contextual states by dynam-
ically tasking specific sensors on individual smartphones.

Our key contributions are: (i) applications can specify a
probabilistic confidence threshold for each collective query. A
key innovation is the use of two separate confidence values
with each context predicate, which permits both deterministic
and probabilistic queries to be short-circuited in a uniform
way. (ii) We propose a novel metric called normalized expected
change in confidence (NECC), based on propagated confidence
values, to dynamically determine a context evaluation sequence
that balances acquisition cost, selectivity and coverage. (iii) By
testing the performance of CloQue on a real-life dataset, we
demonstrate that CloQue can achieve 50-60% energy reduction
without sacrificing any query correctness.

II. THE CLOQUE SYSTEM ARCHITECTURE

CloQue employs a client-server architecture, with a cen-
tralized query processing engine coordinating the sensing and
context collection tasks across a large set of mobile devices.
Figure 1 describes CloQue’s functional architecture.

1Cloud-based Query Evaluation Framework, pronounced as ‘cloak’

The Smartphone Access Layer handles all communications
with the smartphones. The Query Registry allows different
context-aware applications to issue continuous queries to the
CloQue engine, and remove queries when they are no longer
needed. The Resource Monitor tracks the resource levels at
each smartphone. The Rule Mining Engine collects historical
data about each individual and infers association rules from
them, using standard ARM techniques, such as the a priori
algorithm [3]. Finally, the CloQue Query Evaluation Engine
(QEE) is the central coordinator that evaluates the continuous
queries in the registry and sends the results to subscribing
smartphones: this paper focuses on the QEE algorithms.

Context Query Representation: In CloQue, a query is a
boolean combination of predicates in disjunctive normal form
(DNF), modelled as a three-level tree, with the root node being
the logical OR operator, the second level nodes representing
the logical AND operators, and the leaf nodes representing
the predicates. Figure 2 illustrates an example of a query.
Predicates A - E must be associated with at least one sensor
potentially belonging to different users; however, two different
predicates can operate on data from the same sensor. In the
probabilistic setting of CloQue, each query is also associated
with a user-specific confidence threshold, and the query is
considered to be successfully evaluated when the probability
that the query evaluates to true exceeds this threshold.

III. THE CloQue QUERY EVALUATION ENGINE

The goal of the CloQue QEE is to evaluate the set of
queries in the Query Registry, while minimizing the energy
consumption of the set of smartphones.

A. Probabilistic Query Evaluation

In CloQue’s query evaluation, (i) each node in a query
tree has two dynamically changing confidence values (between
0 and 1): the true-confidence denotes the current probability
that the predicate is true, and false-confidence denotes vice-
versa; (ii) association rules mined from historically observed
cross-context correlation are used to propagate confidence
values across the nodes; and (iii) the order of evaluation of
queries is pre-computed to increase the likeliness of short-
circuiting a query.

CloQue uses association rules to capture the inter-
dependencies and correlation among multiple contexts. The
head of a rule is a single predicate, while the body is a
list of other predicates, such that head is true only if all the
predicates in body are true. Different rules with the same head
are treated as a logical OR relationship. A rule is associated
with a con f idence (the fraction of historical data where the
head of the rule is true, given that the body is true).

Query Data Structure: The QEE maintains three data
structures: the set of queries, the list of distinct predicates,
and the set of rules as shown in Figure 2

The set of queries is represented as a forest of query
trees. The two confidence values (true-confidence and false-
confidence) for each context node are both initialized to
zero. Evaluating a predicate at the smartphone will update
the true-confidence and the false-confidence to 1 respectively
depending on whether the predicate is true or false. The set

Fig. 2. Example of the 3 data structures used in query evaluation. The query
set is I, rule set is labeled II, and distinct predicates list is III.

of association rules is represented as a directed graph with
two types of vertices: Logical vertices represent the logical
AND/OR operators, while predicate vertices are identical to
the predicate nodes in the query tree. Outgoing links from
predicate vertices indicate query predicates.

B. Predicate Ordering for Query Evaluation

The predicate list data structure specifies an order for
predicate evaluation that minimizes energy consumption via
short-circuiting. The QEE evaluates the forest of queries in
a bottom-up fashion, starting with the leaf nodes which are
linked to the predicate list. These predicates are evaluated
sequentially: the first predicate in the list is evaluated by
querying the corresponding smartphone and retrieving the
result, followed by propagation of confidence values (described
in Section III-C) via the set of available association rules.
As a result of such confidence propagation, if any query
has been satisfied (the query confidence threshold met), QEE
generates an alert to the application while proceeding to the
next predicate.

QEE’s key novelty is that it dynamically re-orders this
predicate list, potentially after each retrieval of smartphone
sensor data, to reflect that confidence propagation can change
the true-confidence and false-confidence values of predicates
which are yet to be evaluated. CloQue’s re-ordering algorithm
is outlined in Alg. 1, and uses a new metric called NECC to
balance several competing desires, preferring predicates that:
(i) have a high probability of short-circuiting; (ii) incur less
energy cost to evaluate, (iii) affect a larger number of queries
(higher coverage); and (iv) will resolve the maximum amount
of uncertainty about other un-evaluated predicates.

To capture objective (iv), we simulate the update propa-
gation for the two hypothetical cases when a predicate z is
true (t) and when the predicate is false (f). Suppose there
are m internal nodes {q1,q2, ...,qm}. The change in confidence
assuming predicate z = t is,

ΔC |z=t=
m

∑
i=1

ΔCt(qi) |z=t +ΔC f (qi) |z=t (1)

where ΔCt(qi) |z=t is the change of an internal node’s true-
con f idence and ΔC f (qi) |z=t is the change of an internal node’s
f alse-con f idence. The change in confidence assuming that the
predicate is false, ΔC |z= f , is computed similarly.

The normalized expected change in confidence (NECC)

Algorithm 1 QUERY EVALUATION LOOP

Input: A set of queries Qk = {q1,q2, ...qm}, a set of rules R, a set
of energy cost Cost, evaluation period ω
Output: Generate alerts for each query that is satis-
fied

1: Let H be the priority heap for the predicate list by using Eqn. 2
2: for every ω seconds do
3: for all predicate h ∈ H do
4: calculate the NECC for predicate h
5: end for
6: heapify(H)
7: while empty(H) is false do
8: z← extractMax(H)
9: val(z)← evaluate z at phone

10: UPDATE RULE CONFIDENCE(R,val(z))
11: UPDATE QUERY CONFIDENCE(Q,val(z))
12: for all qi ∈ Qk that satisfied do
13: generate alert for qi
14: end for
15: for all predicate h ∈ H do
16: calculate the NECC for predicate h
17: end for
18: heapify(H)
19: end while
20: end for

can be represented as:

NECC(z) =
P(z)ΔC |z=t +P(¬z)ΔC |z= f

cost(z)
(2)

where P(z) (similarly P(¬z)) denotes the probability that
predicate z evaluates to be true (or false) and cost(z) denotes
the cost (in terms of energy) of evaluating predicate z. After
computing this value for all the un-evaluated predicates, the
QEE next picks the one with the highest NECC value.

C. Confidence Propagation Using Rules.

After the evaluation of a predicate at the smartphone, the
CloQue query engine updates the confidence values in the
query forest using the association rules. The query engine
first propagates the updated confidence values through the
rule graph (note that these updates can change the confidence
values of other predicates as well), and then propagates the
updated confidence values up the query trees.

Confidence propagation is performed independently for
the true-confidence and the false-confidence values. Let Ct(u)
and C f (u) denote the true-confidence and the false-confidence
of a node u in either of the three data structures. The update
logic is based on the intuition that the true-confidence of an
OR-node is the maximum confidence of the true-confidence
of its predecessors and the true-confidence of an AND-
node is the minimum confidence of the true-confidence of
its predecessors. For the rule graph where a predicate node
can have incoming edges associated with a rule-confidence
node, the true-confidence of a predicate node, given that its
predecessor’s true-confidence has been updated, is the rule-
confidence multiplied by the predecessor’s true-confidence.
The following update equation summarizes the bottom-up
update logic for the true-confidence value of node v given

Algorithm 2 PARTITION THE QUERIES

Input: A set of queries Q = {q1,q2, ...qm}, a latency threshold l
Output: p partitions Qp = {Q1, ...,Qk}

1: for all qi ∈ Q do
2: Caculate the estimated evaluation time tqi of qi
3: end for
4: sort qi ∈ Q in desending order by tqi
5: for all Qi ∈ Qp do
6: while pop qi from Q do
7: Qi’s estimated evaluation time tQi ← ∑q j∈Qi

tq j
8: if tQi + tqi < l then
9: add qi to Qi

10: end if
11: end while
12: end for
13: sleep until being awaked

each successor node u of node,

Ct(u)(n+1) =⎧⎨
⎩

max{Ct(u)(n),Ct(v)(n)} if u is an OR

minω∈Pred(u) Ct(ω)(n) if u is an AND

max{Ct(u)(n),Ct(v,u) ·Ct(v)(n)} if u is a predicate

(3)

where the superscript n and n+1 denote the time before and
after one application of the update equation. The term C f (v,u)
denotes the confidence of an association rule. Note that for
the rule graph, the update propagation only updates the true-
confidence, as association rules only apply when its body is
true.

IV. CLOQUE: IMPLEMENTATION AND EVALUATION

We have implemented a working prototype of CloQue,
with the Query Evaluation Engine implemented in a perl-based
engine and evaluated it using a large-scale dataset: the Reality
Mining dataset [5] which was replayed appropriately to the
Query Evaluation Engine.

A. Queries and Energy Profiles Used

To test different variants, we designed queries to mimic
three different scenarios of every day events of interest in
workplace settings: a) Interruptibility: –both individual (e.g.,
“Bob is at work and is not using his phone”) and group-
level (e.g., “Bob and Jack are both at work and are not using
their phones”; b) Group Semantics: “Bob, Jack, and Ross
are together at the Cafeteria”; and c) Proximity Alerts: e.g.,
“Bob and Jack are near each other in any building”.

We created 3 different query sets (one for each scenario
listed above) for our dataset. Each query set used trace data
from at least 20 different smartphone users. A total of 63
unique predicates in the dataset were used. We used the Mon-
soon Power Monitor [1] to measure the power consumption of
a Samsung Galaxy S3 phone [2] running on Android version
4.0.3 to get the energy consumption values of the sensors.

B. Four Implementations Used for Evaluation

• Naive every sensor specified in a query is evaluated—
i.e., the evaluation of a query set is not complete until all
the predicates in each of the queries has been evaluated.
The choice of Naive where no collaboration takes place
is similar to the baseline chosen by [6].

0

200

400

600

800

1000

1200

Proximity Group-Semantics Interruptability

To
ta

l E
ne

rg
y

(J
ou

le
s)

Query Type

Fig. 3. Energy Consumption of the Four Variants in Reality Mining dataset

Dataset Prox. Grp-Semantics Interuptability
Reality Mining 18.27 7.52 11.84

TABLE I. IMPROVEMENT IN ENERGY SAVINGS (%) BETWEEN

CloQueFull AND CloQueNoRules

• Short-Circuit queries are evaluated in order until a result
is deterministically known and then processing is short-
circuited. However, the order of query processing is fixed
in a FIFO order. This is similar to the approach in [10].

• CloQueNoRules is a variant of CloQue that intelligently
reorders queries but does not use the association rules
and confidence propagation mechanisms described in
Section III-A.

• CloQueFull is the full implementation of CloQue as
described in Section III. The main difference from
CloQueNoRules is that the full version of CloQue uses the
association rules and confidence propagation mechanisms
to trade-off a little accuracy for extra energy savings.

C. Results: Base Evaluation

Figure 3 shows the total energy consumption for the
Reality Mining Dataset. The result shows that, relative to
Naive and Short-Circuit, the 100% accurate version of CloQue
(CloQueNoRules) reduces the total energy consumption by about
50% with the full version of CloQue (CloQueFull) doing even
better than CloQueNoRules.

Table I shows, in more detail, the benefits of turning
on the association rule engine in CloQue. In particular, we
can save 18.27% and 11.84% more energy for proximity and
interruptibility type queries while saving 7.52% more energy
for group-semantics based queries. The accuracy obtained by
CloQueFull is also between 95 to 96% when the confidence is
larger than 90%. Thus the full version of CloQue provides up
to 18.27% energy savings (depending on the type of query)
for a modest 4% accuracy loss.

The energy improvements are not consistent across all
the smartphone users. However, the energy consumed at each
phone by CloQueNoRules and CloQueFull is significantly lower
than the other two implementations – with CloQueFull con-
suming about 12.08% less energy per phone, on average, than
CloQueNoRules.

Conf. (%) 50 60 70 85 90 95
Accu. (%) 75.2 85.2 90.8 93.7 95.2 96.0

∑Energy (J) 413.3 455.3 485.9 506.8 515.0 523.5

TABLE II. EFFECT OF CHANGING CONFIDENCE LEVELS

D. Results: Sensitivity Analysis

We investigated the effect of changing confidence thresh-
olds of the association rule engine.

Confidence Thresholds: Table II shows the effect of
changing the confidence values of CloQue’s (using the
CloQueFull variant) association rule engine. We observe that
reducing the confidence from 95% to 50% results in a 26.7%
reduction in energy consumption but at the cost of an almost
27.7% reduction in accuracy. Overall, we found that confidence
of 90% (at 10% support) gave the best trade-off between
energy consumption and accuracy.

V. CONCLUSION

We presented CloQue, a cloud-based query evaluation
system for optimizing the overall energy consumption of
group-based queries across multiple smartphones. CloQue
achieves energy savings by exploiting: (i) variable acquisition
cost of different sensors and (ii) correlation among different
phones arising from shared human activity context. Our exper-
iments using real traces from a large real-world dataset shows
that CloQue can reduce overall energy consumption by up to
60% with only a 4% loss in accuracy.

In our future work, we plan to deploy the CloQue system
on real phones and users, and evaluate CloQue in even more re-
alistic online settings and with more diverse datasets. Also, we
have not yet addressed the challenges of latency-constrained
optimization, which we plan to address in the future by (i)
varying the evaluation period of queries to determine the trade-
off between energy saving and accuracy, and (ii) partitioning
the queries into multiple smaller partitions and evaluating the
various partitions in parallel and independently.

REFERENCES

[1] Monsoon. http://www.msoon.com/LabEquipment/PowerMonitor/.

[2] Samsung galaxy s3. http://www.samsung.com/global/galaxys3/.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining association rules.
In VLDB, Santiago, Chile, Sept. 1994.

[4] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and
W. Hong. Model-driven data acquisition in sensor networks. In VLDB,
Toronto, Canada, 2004.

[5] N. Eagle and A. Pentland. Reality mining: sensing complex social
systems. Personal & Ubiquitous Computing, 10(4):255–268, Mar. 2006.

[6] Y. Lee, Y. Ju, C. Min, S. Kang, I. Hwang, and J. Song. Comon:
cooperative ambience monitoring platform with continuity and benefit
awareness. In MobiSys, Low Wood Bay, UK, June 2012.

[7] L. Lim, A. Misra, and T. Mo. Adaptive data acquisition strategies
for energy-efficient, smartphone-based, continuous processing of sensor
streams. Distributed and Parallel Databases, 31(2):321–351, May 2012.

[8] S. Nath. Ace: exploiting correlation for energy-efficient and continuous
context sensing. In MobiSys, Low Wood Bay, UK, June 2012.

[9] J. Pei, M. Hua, Y. Tao, and X. Lin. Query answering techniques
on uncertain and probabilistic data: tutorial summary. In SIGMOD
Conference, Vancouver, Canada, June 2008.

